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SUMMARY

This report desérlbes\i combined theoretical and experimental program of
research in the aerodynamics‘of supersonic lifting bodies. Perturﬁation
techniques are used to study the supersonic fliow past slightly elliptical
cones, cones whose cronss-sectihn deviates slightly but arbitrarily from that
of a right circular cone, cones of smalil longitudinal curvature, and right
circular cones undergoing small harmonic pitching and/or plunging motions.
The;e\studies all invonlve perturbations:of the well-known solution for
supersoﬁ;g flow past a right circular cone. Closed~form analytical results
aré achlevédtthrough the use of an approximaticn that accurately predicts
results over éﬁe entire vrange of the hypersonic similarity parameter. These
results give hyperganic limiting solutions that agree well with other
independent analysesiand, at the same time, agree exactly with linearized
theory in the lineér theory limit. Comparisons with experiment, where
possible, also show good agresement.

An inverse method is used to study the hypersonic €low past slender
lifting bodies with slightly blunted noses. Again, the body’ cross-section is
assumed to deviate slightly fron a circle and a perturbation techanique is used
to develop explicit closed-~form solutions that demonstrate the effects of nose
bluntness on the aerodynamic characteristics of the lifting hody. Explicit
re=nlts are obtained for power-law shock waves.

The perturbed right circular cone solutions are then used to develop a
new class of supersonic lifting bodies known as waveriders. Making use of the
principle that any streamsurface of an inviscid flow can be taken to be a
boundary of the flow, the approximate streamsurfaces for supersonic flow past
a circular cone at angle of attack and a slightly elliptical cone at angle of

attack are used to generate a family of new waveriders. The well-known caret

waverider solution, developed from the supersonic wedge flow solution, is then



used to fashion verticAal stabilizer-lika control surfaces.

Wind tunnal studies of two such wavariders, one generated from the
circular cone at angle of attack solution and the other from the elliptical
cone at angle of attack soalutinn, and an elliptic cone with 1.87 major-minor
axis ratlo werae conducted in the Mach number range 3 to 5 and unit ReynolAds

aumber range 1 to 2 million per foot. Six-component force and moment data are

presented over the angle of attack and sideslip range of *20°. Schlieren data

for the waverider shock wave posglirtions are also presented ainng with results

W pevepry

i

of surface oll flow data. Maximum lift-to-drag ratins of the waveriders ara

found to he 2.5 times greater than that for the elliptic cone. Normal-force

bl

and rolling-moment coefficients, along with the lift-to-drag rations, are fnund
g-

to decrease for the waveriders as Mg increases. TComplementacy surface

pressure measurements were also conducted. Comparisons of the surface

prassure measurements with theory for the on-desiqgn conditinn showed good
- agreement.

The various sections of this repor: have been written so as to be

St ey

essentlially independent of each other. Thus, individuals interested in only §

one portion of the work can proceed diractly tn the section of interest.
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SECTION

TNTRODICTION

Increasingly demanding air vehicle maneuverability requirements in the
high supersconic, low hypersonic Mach number range have focused attention on
the-need for aerodynamic prediction capahilities for vehicle geometries of
practical interest. Of particular importance in this regard is the identifi-
cation of high-1lift configurations with low drag and good control effective-
ness. The likely range of Mach numbers (1,2 to 5+) and angles of attack (0 to
70 degrees) require vehicle configurations that efficiently integrate
the volumetric storage, lifting, and propulsive components of the vehicle in
order to minimize adverse heating effects and maximize the lift-to-drag ratio.

Traditional linear aerodynamic theories are not adequate to the task of
analyzing flows past such vehicles. Finite strength shock waves and large
changes in the thermodvynamic state of the medium regquire a nonlinear flowfieldqd
desnrintion, Typical vehicle configurations being considered for this high
sunarsonic, low hvnersonic Mach number range alsn exhibit considerable
geometrical complexitv. Existing methods fnr analyzing flows past complex
1ifring shapes -~ which are hazed cither on linearized aerodynamics and use
the =aperposition princinle or on elahnrate, expensive computer codes which do
n t easily accommodate realistic geometries -- cannot he relied upon for
d2sian purposes. Analytical results ave generally not available to describe
the flow past most lifting bedy shapes of i1nterest,

7he nonlinear aatare of nhigh supersnaia, low hypersonic Mach number flows
has aade the few bYnown exact solutisns “or flows past elementary geometries
extr=nely important. The solutions for the sunergonic flows past a

saned:merginnal welte an?l a right cirselar cone have beea particularly

e E
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valuable not only as models of wing leading edges and vehicle noses, but also
as the building blocks for flows past more complex geometries. The wedge
solution has been used by Nonweiler (Reference 1), Kuchemann (Reference 2),
Kuchemann and Weber (Reference 3), and others to describe supersonic flows
past caret-shaped lifting bodies. In a similar fashion, Jones (Reference 4)
and others have used the right circular cone solution to describe exactly the
flow past a delta wing with a half-cone underbody. These so-called waverider
configurations all derive from the general principle that any streamsurface of
an inviscid flow can be viewed as part of a solid boundary of the flow. The
variety of waverider configurations available is, therefore, limited by the
number of flowfield solutions for which the streamline geometry can be deter-
mined. Until recently (Reference 5), the two-dimensional wedge and right
circular cone flows were the only flowfields for which this waverider notion
had been pursued.

The otherwise uniform supersonic flow past a two-dimensional wedge or
right circular cone are examples of conical flows--flowfields which are
independent of distance along a ray emanating from a vertex. Conical bodies
are defined as shapes generated by a semi-infinite line, one end of which is
fixed at a point called the vertex of the body. A conical body is generated
by moving any point in the line through a closed curve. Provided the bow
shock wave 1is attached, the flowfield generated by a uniform supersonic flow
past a conical body i3 also conical. The analysis of conical flows is
somewhat easier than that for more general shapes, and the results have been
extremely valuable as building blocks for more complex situations and as
guides to the nature of supersonic flow.

With few exceptions, the analysis of supersonic flows past conical shapes

has been done numerically. The numerical methods used include the theory of
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characteristics (Reference 6), iterative finite difference schemes (References
7 and R), the method of lines (Reference 9), the method of integral relations
{Reference 10), and others. Numerical solutions, while providing accuracy and
a certain generaility, do not as readily lend themsalves to understanding and
easy use as do explicit analytical results. Explicit analytical answers, on
the other hand, ilnevitably employ approximationg which can reduce the accuracy
and/or generality of the resuits. Van Dyke's analysis of supersonic flow past
elliiptic cones (Reference 11, uses linearized theory (through second order)
and gives surprigingly useful resuits over a wide range of conditions., Van
Dyke's results, however, are not valid in the nonlinear hypersonic limit and
thus do not possess the generality that might be desired. Chapkis (Referance
12,, using a perturhation scheme orginalily suggested by Ferri, Ness, and
Kaplita (Reference 13,, studied supersonic flow past conicai bodles whoge
cross—-gections deviate slightly from that of a right clrcuiar cone. To
proceed analyticaily, Chapkis, influenced by Lees (Reference 14), employed an
approximate result for the hypersonies fiow past a right circular cone at zero
angle of attack, A result that incorrect.y assumes the soiution can be
expanded in a Taylor series ahout the cone surface conditiong. 1In addition,
the expressions ohtained hy Chapkis do not reduce to the llnearized theory
results in the linear theory limit.

The present wor% concerng itseif with the development of analytical
rethods that describe the flow nast hodies that deviate slightly from that of
steady supersonic fiow past A right circular ~one at zero angle of attack.

The deviatinns can rasuit from angle of attack, cross-sectional elliptic
eccentricity, loagitriinal eurvature, nmitching and piunging motions, and nose
bluntness. The methods employed are more accurate tnan those used by Chapkis

and, in additicon, raduce exactly to the linearized f.iow theory results in the

appropriate limit.
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This analytical work is the bhasis apon which a novel class of supersonic
1ifting bodies is developed. These lifting bhcdies, called waveriders, give
configurations with attractive aerndynamic performance characteristics that
efficiently integrate the lifting, nropulsive, and volumetric requirements for

highly maneuverable, supersonic vehicles,

a serieg qf giﬂd tunnel tests have been conducted to both guida and
verify this analytical work. Six compcnent force and moment measaurements were
made. Schlieren and surface cil-flow visual 1ata were recorded along with
surface pressure measurements. These experimental results confirm the basic

theoretical work on waveriders and provi.isz data over a variety of off-design

conditions,

The report ends with a summarv of conclusions and suaggestions for future

research directions.
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SECTreN 1T :
TONE PERTIRBATLON STINIES :

T™is section deals with analytical stulies of supersonic and hypersonic -

flow pagt bodies which deviatre slishtly from a right circular cone. 1In tihis <

way can be studied the effects of elliptical eccentricity and other
cross-gsectiona® Jeviatinna from a circle, angle of attack, longitudinal

sarvature, pitching and nlunginag metinng, and *he effects of nose bluntnass.

1. SLLIPTICAL CONE

For supersonis fiows nast hodies without axial symmetvey, the elliptical
cyne Ls a hasic body shape. TIts cceunteraart, the girsusar Tone, is a rasic
axisyvametric hody shape witn flowcield nroperties that are extensively
2@ saparsonlT Tlous wast a ffircular cone at small anale of
attank is extensively tahbulat-d and fairlv well nderstond, On the other
hand, €he nroperties of rthe sapersonic flowfield past an elliptic cone are not
extasively tahulase?, at leas+s i1 corrarison with the cirsular coce »of
att4c¥. Alz=oagh saneracuas vapers bhave heen directed toward supersonic flows
past cliintic cores, their zoals tave heen specific, and no general or
corprehensive flow®iold saloalatisng are heen set forth. The purpose of this
w5 0 partiilly remedy this sitaatinn and tn prasent an approximate
analvtic solution than 1ilus-rates e genoer-al flowfield features of

neparsonic Tlow past a sle-der s10istie one with small eccentricity.

Sanemrsoinia Tlow n 3% sle~der oneg owith: arhitrary cross sections can e
“r2are ] witn seme roeioeralire he mon € lainearize? aeory (Reference 18), and
oaearized Theory can he o extended e o500 oond arder [(Re. :nce 11) to account

3572 AnAY For waat e livegs affosr3, Thane reseliz, bLowever, are frequentlw
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not appropriate for the hypersonic Mach numbers and flow deflections of

t,

practical concern.

1l TN
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Another approach to the problem deals with flows that deviate slightly

from the basic axisymmetric flow past a circular cone., The so-called scheme

of lineerized characteristics was applied (Reference 13) to several conical

g e
T RN

bodies with non-axisymmetric cross secticns. This method is subject to a

o

f number of criticisms for cross-section areas that deviate significantly from
circles (Reference 16), ani thus a modification of the linearized
characteristics method was applied fo elliptic cones at angle of attack by
Martelluccl (Reference 17). 1In the abhove use of the linearized
characteristics method, the perturbation eaquatinns wera solved numerically.
Chapkis (Reference 12), applyina the linearized characteristics method, used
hypergonic approximations for the basic cone flow to obtain relatively simple
! specific results for an elliptic cone.

| Resides the above methnds of computation, there are numerical schemes for
integrating the complete gover:ning gas dynamic eguations. Two notable schemes

applied to elliptic cones are those of Stocker and Mauger (Reference 18) and

Babenko, et. al, (Reference 7). There are als> semi-empirical methoeds for

Py s

dealing with certain features of supersonic flows past elliptic cones, such as
tangent=conae methods, equivalent circular-cone metheds, anéd t%e method of

Kaattarl {(Reference 19), Whichever method has been utilized to date, the

- r— L AT N

general features of the sapersonic flowfield past an elliptiec cone, showing
effects of Mach number, <one angle, and ellinse eccentricity osn the shock
ghape, the shockelayer struacture, ani the surface ~onditionsg, have not been
delineated,

This undertaking starts with the snall-perturbation equations for

perturbed flow pas% a basjc circular zose ac zera aniala of attack and takes
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the approach of Chapkis (Reference 12) *for the elliptic cone. Improved
approximations shall be used for the basic cone flow (References 20 and 21)
and approximate analytical solutions for the perturhation equations shall he
obtained. The analysis is analogous to that of Doty (Reference 22) and Doty
and Rasmussen (Reference 23) for obtaining approximations for hypersonic flow
past.clrcular cones at small angles of attack, w! ch was shown to he very
accurate. The analysis is cast in the form of hypersonic similarity theory,
and the results are presented in appropriate similarity form.

The perturhation expansions involve a small parameter for the angle of
attack and for the measure of the eccentricity of the ellipse cross section.
Thegse expansions are not uniformly valid in a thin vortical layer adjacent to
the cone surface. 1t can he shown {References 24 and 25), however, that at
least the pressure and azimuthal velocity component are valid across the
vortical layer. Since these two variables are of most importance, further
coneideratiorn of the vortical layer will not bhe undertaken.

a, Inyawed Ellintic ~one Body ani Shock Geometry

In rectangular Cartesian coordinates, as shown in Figqure 1, the unyawed

ellintics wone Yody is represented by

~“nerz a T tan 3, and b ot fan Y are tne tangents of the semivevtex angles of

e seafminor and semjmajor axes of the elliptic cone. In terms of spherical

nular sohordinates, alsy shown 1a Figar= 1, Sationn (1) can be rewritten as
tan 2 = ran o R (2)°
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where

bY 1-e = a’ 1+e

a< + b
= v/ ab (1-e2)1/4
e 2 b2 - a2
bz’&

The parameter e is a measuve of the eécentriéity nf the elliptic cone.

The firsgt three tarms of the Fonrier-series reprasentation of Equa:

(2) are given by
1,
tan 9 = tan Oy, [(Ap + Aa cns 20 + Ay cos 4¢ + «..4)

where
g T2 K(x)
" ————
vV 1+e
hy T o= 4 [(2=k?} K(k) = 2E(K)}
nkz Y i+e
Ag = -2 Ap - A M
3 Je
2 = 2e
140
an?
n/2
F(k) = ! V1 - %% s1n‘u du
)
12 du
K(wy =
hl
o1 - we SiW;U

are the complete ellintic intearals ~¢ +he first aad second kinds. For

valunes of the eccentricity, e, «ha Taurinc- cnefficients can be expanded

(3a)

(3b)

(S5a)

(Sb)

(5¢)

(5d)

(S5e)

(5f)

gsmall

as
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Ap = 1+ 3 e? + nged) (ha)
16
Ay = -e 1 +15 &2 + 0(ed)) (6b)
2 32
Ag = 3 e2 [1+35 e+ 0(ed)] (6c)
16 48

When the eccentricity, e, is small the successive Fourier coefficients become
smaller and smaller. For sufficiently cmall a, the Fourier coefficients for
the higher harmonics can be neglected,

Equation (4) can be expanded for 2 in a Fourier expansion and give for

small eccentricities

8 = 8 - £9 cos 23 + 0(e42) (7)
where
s = tan“(Ao tan A.) = AnAzz sin 2 4, + et 1
4
2 By + €2 [3 - 2 8in?6y! sin 29 + 0ied) (8a)
32
£ €, - Ap tan By (1=(A32 + Ay) 51?9, + A2 (1438,2) sinde, + 0(ed)}
/ 1+Ap“tan®f, 4 4
i .
Te[1+e? i15 -5 8in29, + 1 gindo ) + 0(e?)! sin 2 3, (2b)
4 32 8 4

The parameter €, is a new measure of the eccentricity and is the appropriate

parameter to be used in the subsequent analyvsis. The sihscript 2 on £ is
introduced here for later convanience, The parameter § specifies the
semivertex angle of the hasic ~ircular -one ahout which a perturbation
analysis i3 te he performed,

Comparison of the twh=term approxi-atiin Eguation (7), with the exact

Egquation (2) for the ellintis ~one is 5 wn 19 Pigure 2. When a = 0.2555 and
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a=0.2555
b=0.3562
e=0.320

a=0.2256
b=0.4034
e=0.523




b = 0,3562, such that e = 0,320 and 8y = 16.30 degrees, the two-term
approxination gives a good representatinn of the actual ellipse. When a =
0,2256 and b = 0,4034, such that e = 0,523 and 9n = 15.56 degrees, the
representation is not as good but is still a reasonable approximation when
precise accuracy is not paramount.

The conical shock wave attached to the elliptic cone is assumed to have
the form (for a = 0) | -

Bg = B = €295 cos 23 + 2(e?) €))

which is analogous to Equation (7) for the body shape. Here B is the
gsemivertex angle of the basic circular shock corresponding to the basic hody
with semivertex angle §. The factor g5 is te be determined from the
perturbation analysis. 1It, in effect, vrepresents the deviation of the shock
eccentricity from the kody eccentricity.

By means of vector analysis, the outward uni< normal on the shock is

given by

~
~ Y

ng = eg - 2639 sin 29 ey t D(ey?) (10)
sin 8

This result is needed to establish the shoack jump conditions.
b, 8oundary Conditions
Let the velocity vecteor for conical flow he reprasented in spherical

coordinates hy

~ - -~

-
Vo= u(9,8)e, + vid, ey v wid, ey (11)
The Fourier representatlion for the hody and shock shapes suggest that the
velocity components, oressure, and densi*y zan be expanded in the following
forms, valid outside the vartical layer adjacent to the body surface (for

a = 0):




e — -,

ulB,9) = ug(d) + 75U5(9) cos 2% + 0(522) (12a)

v(8,0) = vg(9) + :5Vy(9) cos 2¢ r 0(e52) (12b)
wif,) = €oWa(5) sin 2 + 0(ey2) (12¢;
p(8,d) = pn(8) + £,P5(0) cos 2¢ + 0(cy2) (124,
P(B,¢) = pp(B) + £7Ry(B8) cos 2¢ + 0(ez?) (12e)

The lowest-order terms, with the subscript naught, pertain to the bhasic
circular~-cone solution, which is presumed known,

The free stream velocity in spherical coordinates is given by

R d - -
Vo = Vo{cos 2 e, - sin 5 ej) (13)
At the shork, 8 = 85 = B - €595 cos 24, it is necessary to first order from
cos (€393 co8 2¢) = 1, sin (€39 cos 23) = €393 cos 24
> ~
Ve = Vaullcos 8 + €90y sin 8 cos 264} ey
- [sin 8 - €59, cos 8 cns 2¢} eg + 0(622)) {14)

Using Fquation (10), the normal velocity at the shock is found to be, to

first order,

+ A

Vao'ng = =Vwsin # + £535V0 cos 3 cos 20 + 0(e32) (15)
The shock jump conditinng give for the pressure ratio across the shock
Pg = 1+ 2L (M2 - 1) (16)
Peo y+1
£or A thermally and caloaricalily perfect gag. Here vy is8 the ratio of sgpecific
heatsg, v = cp/cv, and M, 1s the normal =nmponent of the free stream Mach
numh=r. Substituting (1%5) into (16) yields

pa = 1+ 2Y_ (Kg2 = 1, = €5 4Y_ Kg2gy cot 3 cos 2¢ + 0(e2) (17)
Peo Y+1 T+ 1

ahere Kg & Mg Sin B.
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% ’ Equation (12d) for the pressure evaluated at the shock rea-?s
P(8g,0) = ppldg) + €5P5(8g) cos 26 + 0(e2) (18)
ER Tranaferring‘this value to the basic unperturbed shock by means of a Taylor
expansion yields, to first order,

P(Bgs¢) = pp(B) + €30 =~ {dpy) g3 + Py(B)! cos 24 + 0(e2)  (19)
a8 g

-Identifying the first-order perturbation terms in (7) and (9) leads to the

shock boundary conditions for the perturhation pregsure

' Po(B) = - 4y gpKg® cot B + gy [dpy) (20)
Px Y+1 Pw 40 ]

For the undisturbed conical flow, the pressure gradient can be evaluated in

terms of the velocity gradient. Hence,

{dEQ) * PoVw Sin B8 Ve cos 3 + idvo} ) (21)
a8 g dé 4 i

Thus, alternatively, the pressure boundary conditinon can be written

) /Vew cos 8] (22)
8

———

P5(B) = DwgsV 28in B cos R [y=3 + [
@
‘ Y+1

ala
o<

The derivative (dvc/de)s can he avaiaated in terms of the density ratio
acrosa the shock, as shown below.

The denaity ratin acronss the shock i3 qgivan hy

Pg (Y+1) M,°

Expanding this expression analoqously to that for the pressure, the shock
density, to first order, is obtained:

om = 59 + €353 cos 28 + N(e?) (24a)
ns

14
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where

Fg T _Pm__ = (Y=1Kg? + 2 (24b)
pg(B) (y+1) Kg
52 2 292 cot B (CO - l:l) (24¢)

Y+1

An explicit expression for Ry(8) is not needed. It can be shown from the

basic cone solution that

{dvg) = <Vx cos 8 [2 ~ y-1 [g]) (25)
i 48 B Y+1

The velocity components immediately downstream of the shock are obtained

- from the governing conditinns on the normal and tangential components. The 3
: normal components of the velocity ares governed hy the mass consarvation %
. 3

- eguation: 2
;.' + ° s * g
i (V'n)g = pw (Va'nig (26) i

: o8 H

[

o

; The right side is determined to first order hy means of (15) and (24):

-~

L

-+
(Vo'nig = = S9Vo 8in 3 4 €5Ve (5909 cos B - £5 sin R) cos 2¢ + 0(622) (27)

ekl (i

f
1

The left side of Equation (26) is determined to first order from (103, (11)
aad (12) as:

. A

(Vinyg = vo(8g) + €9Vy(dg) cos 25 + 0(€2, (28

T:ansferring this vaiue to the anperturbed ghock yields

a
>

(V*'nys = VO(B) + CZ[VZ(B) - ap (dvp, ] cos 24 + 0(622; (29)
38 3

DT NG T WY SO T AR A b

Comparing Eguations (27, and (29) leads to the fnllowing results:

volB) = =Sg¥e sin B (310)

(3%a)

i e

) Ta(B) = =55V 310 B + 95779V cos B + (dvp) )
48 8
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Utilizing (24c) for £, now gives

V(B) = g{{2{y=1) - %o} Vs cos B + (dvg) ] (31b)
y+1 49 g

The other two velocity components at the shock are determined from

congervation of the tangential ~omponents:

> - > ~

Vo X Ng = Vg X ng - {32)
Subgtitution of the first~order expansions and transfer of the conditions to

the basic unperturbed shock yields

up{B) = Ve cos 3 {33
Up(B) = goVe 3in B(1=Lp) (34,
Wol3) = =2g,Va(1=5y; (35)

The needed boundary =~onditions at the shock have now been specified.

At the body surface, 8 = 0, = $ -~ £, cos 2%, the normal velocity must

vanigh:

-

FY

(V'n)o = 0 (36)
By means of vector analysis, the unit outward normal vector on the elliptic

cone surface is found to he, to first order,

- A -

ng = ey - 26, Sin 26 ey + 0(e?) (37)
sin 3
Substituting this expression and the velocity expansions into (3.25) and

transferring the houndary conditinns ton the basic circuiar cone surface leads

to the surface boundary conditinns

(38)

i
(=]

va(d)

(39,

Vo (§) (dvgy)
49 5

Equatlon (38), of course, is the tangency condition for the basic c¢one
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problem, and Eguation (39) is the «surface houndarv conditinn for the
first-nrder perturbation, Rianrvuiasly, Fouation (39) 3hculd have heen obhtained
bv matching the outer expansion with an inner expansion for the vortical layer
adjacent to the cone surface. Such an analysis shows that Equation (39) is
indeed proper (References 24 and 25).

Ce Perturhation Fquations

The pressure, density, and velocitv are governed by the eagquations of
changye for mass, momentum, and energy, nlus appropriate eguations »~f state.
Here the assumption is that the flnw is inviscid, nonconducting, steady, and
hehaves as a thermally an?i calorically perfect gas. The task 1is first to
ohtain expressions for the pressure an'! dernsitv perturhations in terms of the
velocities, and then finallv %o obhtain a single equation for only one of the
narturbhation velocity zomponents,

oy steady flow, the rnerav e-uatinn can bhe exnressed in terms »f the
antrony, s, as

5
regral o3 = N (40)

Thus £he flow on einrter 3ide of the shosk ias isentropic, that is, the entropv
alonia a 3treamline ig a cnonsgtanc, OF course, the uniform flow upstream of the
3% {s nomentropia since =he entrony is the samA on every streamline before

i* masses throuuk rtha ghock, I the notrany 18 axpanded 1n the form

[¥5)

,8) = sa(D) + £585(3) cos 23 + A(ed) (41)

S

then 2xpansinn of Friation (490) leads to the result that sy is a constant and

“hant Sy e alsn A constant. This *he zerathenrder flow nast the basic cone is
homenatronic downstroeam of 1 he shack.  fince 55 15 a constant, the first-order

astropy Yerturbatina Aerenids snlyv orn s arimitral anale 4, This result is

n~t 3133 on the body surface hoacanse the ho3Av anrface 13 a4 stream surface

1%
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i
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i
3
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b
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2
2
2
{
i
3




that has a constant entropv, since aral s is a vector that ls perpendicular to
the surface s(9,¢) = constant and is als» nerrendicular to the velocity, which
itself is tangent to the body surface. ™us expansion (41) is not valid in a

thin laver, called the vortical laver, adjacent to the body surface. oOnly the
pressure and azimuthal velocityv are nmifarmiv valid acrnss the vortical laver,

From the thermodynamic state velatinn for a perfect aas

ds = dp - 20, (42)
. © o

it is deduced that the first-order pressure and density nerturhation satisfy

the relation

92(5) - Y Ra(8) = §, = constant (43)
Dn(ej OO(B) g

Another relation bhetween the npressuare and densitv perturbation can he
found from eneray considerations. Sinze *he uniform flow unstream of the
shock 1is homenergic (constant t2tal enthalnv) and horeneraic across the shocek,

it is also homeneraic Aowns&iream o€ the shoav, Thus for a prerfect aqas,

Y p+* gi = 1 Dw * sz = cons+tant (44)
Y=1p 2 ¥=1 Dw 2

Substituting the perturbatinn foarms (12) into this emiation ani extractina

the first-order perturbatinn vields

Po(9) -~ Ro(9) = - y=1 95 ‘unl's + vaVs) {45)
pPn(9) on(0) Y Pp

This is a relation between the nressure ani density nerturhations in terms of
the velocity pmerturhation,
Eauations (431) and (43) can he solwveld separately for the pressure and

density perturbhations.

R2(9) - Do(chz + VaVﬁ) + QﬁF7 14/
an-*

1

1
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P2(5) = - Dn(' ,‘\f‘:\ r ‘y'f\\'z) + ron (47)
where 502(6) S Ypp/Pp is the speed of swouad sguared in the basic unperturhed

flow, and

Fy 2 - S2 = congtant (48)
: (y=-1)=,

- e ———

The pressure and density parturhatinns are thus determined in terms of the

: velocity perturbations. The constanr 75 car be obtained from the shock

houndarv conditions

Ps(83) + palB) "upid) U5(R) + '\"r)(S) Vs(B),
2020 T oRpil) 0 2 2
pn(3) pal3)

Fa

Yaote? sin 3 cos 8 {1-52)7/a42(8) (49)

1]

mha momentym emAtrion for inviscid steadv flow is

+>
PIT(VZY « v % ) = =Vp (50)
2
where
» IS

D= carl W

is kERe vnrticityv vector, For the velror cuanbli' ies let
» * »
Vs vy v IV, - Q(;QQ) (51a)
> >
- - NN .
R + (7 (51h)
Whan <he periuwhation expaasionz are gihar itgted intd Eauatien (59), the

first-order pertirbation eanation ~an he extracted, and it is

(25 cos 28) Y lu 24 vaty . Sa VAUt = DAt X Dy = =V(Py cus 24%) (52)
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The first-order vorticity nmerturhation has the components

Q9. = sin 26 [ (W2 sin ) + 2vy!

4
r sin 6 A9

9 = =« 8in 2¢ (22U + Wy sin O]

r sin 0
Qg = co8 2% (Vo - dUy)
r 38
In addition,

+ +
Vg x 2y = er(V092¢) - eglupflng) + 8¢(u0329 = vgilag)

From Equation (52) it can be determined that

> > -

(Y X 2y)eey = N

It follows from (54) that il5, = 0, and hence that

Thug Equation (54) reduces to

-

+ >

VO X 32 = e¢(ﬂnQ?? - Vﬂnzr)

The ¢-component of Fauaztion (52) can he written as

UOﬂze - Voﬂzr = =2 122 + U0U2 + Van] sin 29
20 r sin B

The pressure perturbation P, can he eliminated bv means of Equation (47), and

regults in

Unnng - Vnnzr = -QQD2F7 sin 2¢
A r sin 9

20

(53a)

(53b)

(53¢)°

(89)

(56)

(57}

(58)
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where anz(B) 3 Ypg/Pg and F; is a constant given by (49). By means of

(53 a,b) Equation (58) can be further rewritten as

vg 8_ [2Up + Wy sin B8] + ugl2Uy + Wy sin 8) = 2F, ap2(9) (59)
a8 Y

Introducing the integration factor

8
1(8) 2 exp [ | (uy) 48) , (60)
B VO

allows integration of Equation (59) and provides

8
2Uy + Wy 8in 6 = 2F, 1 | 2521 46 (61)
Yy IB vo

The constant of integration vanishes by virtue of the shock boundary
conditions (34) and (35). Equations (56) and (61) give V5 and W, in terms of
Uy. It remains to find a single equation for Uj.

Mass conservation is aescribed by the continuity equation

+

div(pv) = 0 (62)

When the perturbation expansions are substituted into this equation and the

first-order perturhation extracted, the result is
Ed »

div (Rp cos 2¢ vg + pIVy) =0 (63)

'ith the hasic mass conservation equation accounted for, this equation can he

rearranged to read

+ »> +>
div V2 = "V()'V (R~ cCoOSs 22) - !l . VOO (64)
Py Po

Tf it were assumed that the density varies so slowly that it is approximately

a constant, then the right side of Fquation (64) can be set equal to zero as

P . o ke - 3o e ks -
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- for the basic-flow solution and for the flow past a
& attack (References 22, 23), These constant-density
justified a posteriori by comparison with extensive

results. Such comparisons are not so availabhle for

+
¥
-

' the right side of Rquation (44).

utilize the following basic-flow results:

an approximation, and a relatively simnle equation for V5 ensues.

>

Note that

the right side does, in fact, vanish at the body surface, 9 = §. This

so~called constant-density approximation leads to raemarkahly accurate results

circular cone at angfe of
approximations wera

nemerical Eabulated

the elliptic-cone problem

of pregent interest, and hence more attention mist he devoted to the terms on

Now eliminate R5(8) in Equation (54) by means of Eaquation (46) and

g2 dog = 1_dpg = _1_dap? = - 4 (up? + vp?) (65)
Pn d8 No 49 Y=1 49 40 2

Equation {64) can now be expanded and written in the form

(1-A) QVy + cot 8 (1-BJV, + (2 = _4_ = C)ly = = 2(20, + W, gin 9) (66)
ae sin29 8in<h
where
; A(0) = vp2 (67a)
i e
; an*
H
B(B) = tan 8 vy (up + dvg) {2 + (y-1) yy2! (67b)
60' A8 an”~
C(8) = wa? {1+ (y=1) up_ (ug + dvy)} (67¢)

an”” in”~ A3

The factors A, 8, and € in E~uarion (46) are variable coefficients, and thevy

stem from the right side of Fquation (64), A+ the cone gsurface 9 = §, the

factors A, R, and ¢ all vanish since vqf8) = n, ¢

the factors A, R, and < take the valueg

22

the ghnok surface 8 = 8,
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A(B) = 2Eq ‘ (hRa)
C(Y#1) = (=)

B(B) = 4 (68b)
(Y#1) = En(Y=1) p
C(BY = En = 2(y=1/y+1) cot?8 , (68c)

(y+1) - Ealy=1)

where tﬁé undisﬁurbed shock denéitv raﬁin, EO,Iis given By (24h). In.the
hypergonic limit, Xg = @ and A(B) takes the value (Y-1)/2Y. Thus for Y = 7/5,
A(B) = 1/7 for Kg = @, For hypersonic flow it is thus safe to neglect A(9)
compared to unity. Since A(8) = 0, it is thus reasonable ¢ neglect A(0)
always except perhaps verv near sonic conditions, for which A(B) = 1 when
Kg=1. Likewise C(f) is small compared to (2 - 4 csc? 8) in the coefficienr of
Uy for all values of Xz, Thus €©(6) should he negliaihla in general since it
alsc wvanishes at 3 = §, The facenr N(3) waries hetween (Y+1)/Y for KB = & and
2 for XKg = 1, and thus apparently should not he neglected compared to unitv,
Moreover, the facknar (1-R) changes siqn betweren the shock and the body. ™
the other *and, if A, ®, and ¢ are all nealacted, tha resulting differential
equation still behaves properly at the hody surface since A, B, and & ranish
tnhere anvway. In addition, *the resgul=ina zecond-order Aifferential equation
mﬁst\;atisfy tie two boundarv conditinns for 15(2) and V4o(R) at the shock,
Thus, even t-ough 4, 7, and & he neale~ted, the resulting solution should
Y. .ave properlv at both sides of the shnck layer, and presumahly alaso in
hetween. As mentioned earlier, neglecti-a &, B, and © yields good results for
the circular cone at anale of attack.

Sven thouth 15 {s intended eventnally to obtain an approximate solution
by neglecting A, R, and 0, the rasni:s Tan bhe justified still further by
recastinag the Aifferential emuatinn As 3ar jnteqral equatinon. Renlacing Vv, by

~

{368) and 'y hv (F1), Fanatinn {~A)Y ~an he resritrarn as

23
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Up" + cot B Uy' + (2 = 4 csc?d)1y, = - 4Fy Ha(9) + Hp(0)
Y sin“8
where
8
Hp(8) = 1 [ ap? 1 a9
; 18 vn
‘ Hz(e.) 2 AUs" + B cot 8 .Up" + Cly
{
! When Hp and Hy vanish, a solution to eaquation (A9) is r', = cec? B, This
‘ suggests the substitution
Us = X(8) csc28
Equation (69) can now he written
(X' ' = = 4F5 Hp(9) + Hy(8)
8in30 Y sin’9  sin 8
Two integrations yield
0
X(8) = X(B) + X' (B) [ sin?9 a8
sindB B
B 9 9 9
- 4F> [ [8in38 | Hp(9) 491 A0 + [ [sin?0 | H,(9) 48] 49
Y 8 B sin°P 8 g sin 9§
where
X(B) = Uy(8) sin? 8
= goVw sin3g (1 - £a)
X' (B) = gy 8in?B ((4Y_ - 3%54) Va cos B + (dvy)

T+ A9 B

When X(0) is known, +the veloni’ onrnts are determined by

Uy(8) = ’9

WA cov 01 /gin” 9

vz(G'

© {70a)

RPN « AT RS R T R SRS SR R SRR S

(69)

(70%)

(71)

(72)

(73)

(74a)

(74b)

(75a)

(75b!




Wp(8) = [=2Up(*) + 2Fy Ho(8)j/sin 0O (75¢)
Y

The shock eccentricity factor gy i3 determined by satisfying the surface
boundary condition (39) and then solving for 9o+ Equation (73) is an integrai
equation because the unknown function X(9) also appears in the function Hy(0).
d. Apprqximgte Solutiqn for Hypgrsonic_Plow
For hypersonic flow in the limit M, + = and sin 9 + 0 such that the
combination K £ Mp sin 9 remains finite, the basic cone flow can be
approximated accurately by (References 21 and 21,

up(0) = 1 - sin? 5(sin? 6/sin” & + 22n ((sin B/sin 0))]/2 (76a)
Veo

vp(8) = = 8in 8 {1 - ginZ §) (76b)
Voo sin 5

and the reliation between the shock and body angles is given by

sin B = Y+ + T (76¢)
sin & v 2 (M 8in )2

Now regtrict computations to small anglies such that sin 8 = & and neglect

second-order terms in (76,. The results are

ug 1 (77a)
Veo
vg ¥ -9 (1t - 5; ) (77b)
Vm 9

e (77¢)
8= RAER NN
5 v 2 KS.Z

where K§ I Kol is tne nypersonic gsimiiarity parameter.
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With the approximations (77a,h), the inteqgrating factor I hecomes

5 1/2
I = ((B2 - 82)/(8, ~ §2)) (78)

In the evaluation of the function Hp(€) aiven by (70a), the speed of sound
squared ao2(e) varies only by a few percent acrogs the shock layer. Replace

it by a02(8), and the function Hn(6) becomes

Ho(9) = ag2(8) (1 - B2 <82 ) (79)
Veo / 8 -~ &4
Thus are attained
6 0 0? 752 } 1 1
] Hp(0) a8 = an“(B8) [ 1 ! 9< - 8§ - 1} + 1 (cos™! § - cos™? §)]
B 9 We 82 v 3T 282 B 8
5/ g7-52
(R’0)
8 8 ,
! 3 ? ' 4 Z 2
J (83 [ Ha(B) a49) = ag”(B) ¢ 98c - 82 (5 9% =~ 52)
B e ave W 3T -7 & 3
(81)
+ __ 084 (cos™! § ~ cos™1 §) + 82 + 82 - 52
R 5 & 3
26/ g7-87

The first approximation solution for the {nteqral ecuation (4.35) is
obtained Yy neglecting the {ntegral involvira H,5(2), which i3 the same as
omitting the factors A, B, and C in the nriginal A{fferential emation. The

results are

Up(8) = X(B) + X'(B) (8% - 8%) + f, ¢~ 32 - 52 (5 - §2 )
8 4B362 2 7/ 37 -2 & 382
+ 62 (cos™1 E - cos~1 é) + B2 4+ 52 . 1] (R2)
3 n 60< 382
26/ B2 - 62
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Vo(8) = =~ 2X(B) + X'(B) (8_+ 2 ) + fy [ 1 "0Z - 37T (14 82 )
83 2 g3 o7 6 v 8L -82 & 397 :
+ 0 __(cos™! 8§ - cnu"l §) - 82 - 52 (83)
B 8 685 383 5
26/87 - &2 ;
Lo : WalB) = ~ 2X(8) = X'(B) (8% - 84) - £5 [ 1 82 = §2 (=1 - §2 ) o
[ 83 28763 5 v/ 87 - 62 & 387
]
1
+ 8 (cos™! § - cos™! §) + 32 + 52 (84)
. B 8 685 363
25/87 = %
where

£, 3 ~ 2p2a02(3) = -2ayVw sin B cos B(1 - 60)2

YVeo
2 = 2g,Ved(1 = £4)2 (85)
X(B) = gyVeB3(1 - 54) (86a)
X'(B) = 4pB2 [( 4y - 3£g) Ve + (dvp) ) (86b)
Y+1 a9 8
= 2 goVad? [(Y-1) = Eply+1)] (86c)
Y+ 1

Expre=gsinn (86c) is the approximation crnsistent with the velocity

ape aximation (77b), that is,

(dvg) = - Veil + 52) (87a)
40 o -57
- Val - Lp) (87b)
3i~ce
Sn = 1 - .‘5_‘2’ (87¢)
3
27




The shock eccentricity factor, g;, can now be determined from the
boundary <nndition

Va(8) = (dvg) =3 = 2V,
a9

Solving for g, from Fguation (83) yields

1= (1 -50% (8 cosT! (6/8) - 83 -8}« (1-¢y 83
92 I TE Y 3
2 /BT 82
+ 1 {6q - Y211} (8 + 83)
2 y«1 8 53
Denot ing the basic-cone shock-body ratio by
orgs TRTT
§ v 2 Xg?

one ohtains

1 = 1 (3cos~t (1/0) + 6_ (0B + 02) + 304 - 02 - §)
92 603 e Y+ 1
Yy 92 -9

(88)

(89)

(90,

(31)

The shock eccentricity factor, g3, is plotted in Figure 3 as a function

of Kg for v = 7/5. For Kg + 0, which corresponds to the limit of linearized

theory, the eccentricity factor tends to zern, g; * 0; that is, the shock

tends to a circular Mach cone. For the limiting hypersonlc flow, Kg * = g3

approaches the asymptote g, = 0.955, and the shock tends ton embrace the

elliptic cone body. The shock, however, is always less aeccentric than the

body. When Kg + ® and Y + 1, then 8 » § and g5 * 1, and the shock embraces

the body, in agreement with hypersonic Newtonian theory. The angle-of-attack

shook eccentriclty factor, gp, obtained later, is also shown in Figure 3 for

cuiy rison.

The fi.rst approximation for the velozity U,, given by Equation (82), is

plotted in Figqure 4. The hypersonic similarity form givas 15/Vel as a
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function of 98/8, K§, and Y. Because the thickness of the shock layer varies
as a function of Kg§, the shock layer is normallized by means of the variable

' = 9 - & ., (92)

]
o

The body surface corresponds to &' and the shock surface to 6' = 1, At
the body surface U)/Vaod is insensitive to variations in Xg, having
approxim;tely the value unity. At the shock surface, Uy/Vwed is éuite
gsensitive to variations in Kg. In the hypersonic limit Kg = @, Us/Vmd
increases only slightly from the shock to the body.

The velocity perturbation V5/Veo is shown in Figure 5 as a function of 9°,
Y = 1.4, and various values of K5. The variation of V,/Ve across the shock
layer is analogous to the variation nof i15/Ved, except that V5/Ve 1is equal to
-2 at 6' = 0 as imposed by the boundary condition, Egquation (88),

The azimuthal velocity perturbhition Wy/Vo is shown in Figure 6 as a
function of 2', vy = 1.4, and various valu?s of X5. At the shock surface,
Ws/Ve increases as Kg increases. For K§ = 2, the variation of W;/Ve across
the shock layer is very slight. At the ﬁbiy surface,W;/Vo decreases as Xj
increas:s. This is shown also in Fiuure‘;. When Kg * 0, Ws(8)/Ve *+ ~2 which
is in agreement with linearized theory. 1In the hypersonic iimit K5 + =,

W5 (8)/Ve becomes asymptotic «n the value N.,653 for Yy = 1.4. The corresponding
angle-of-attack contribution, Wa(5)/Ve, discussed in Section 2, is shown in
Figure 7 for comparison.

e. Evaluation of the Approximate Aralysis

Let the first approximationon for the intearal Equation (73) be denoted by
Uz(O), which is given by Eguatinn (32). ‘nen the inteqgral ®quation (73) can

be written, for small angles, as
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Uy = Uy 0 4 yy(e) (93)

where
( 8 3 ]
up(€i(ey = 1 [ sin33 (| Hy(9) 49, 48 (94a)
sin%9 8 g sin @
8 8
=1 [ 83 (] Ha(8) as) as ; . (94Db).
82 8 3 8
Hp(6) = AUx" + B cot 0 Up' + cUjp (95)

Congider now an approximate evaluation of the correction function szc).
Towards this end we utilize the well-known convergent iteration procedure for
Voltera~type integral equations. The firgt step is to substitute the first
approximation U,(0 into H,(8) and then evaluate U5(S). Expression (82, for
Uz(o) is fairly complicated and does not lend itself to a simple analytical
evaluation of Uz(c). Figure 4 shows, however, that U2(°’(B) can be
approximated by the simple formula

Ul = (6)2 Gro,xg (96a)
Vol 0

where G(9,K§) is a slowly varying function of 9 and K5, beina approximately

unity. It now follows approximately that

Us' (01 = yy(0) = 22 (5)3 ¢ (96b)
Vo Voo 3
up"(0) = 5 53 6 (96c)
Voo £

-~

since G L8 nearly a constant. Again it may he verified that expression (96b)

gives a reasorahle approximation to Fiqure 5.
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Substitution of expression (96) into (95) and then (94b) yields

0 9
Upfc)(8) = upf0(9) é 83 ( é ( %g - %g + %31 a8) a8 (97)

In the evaluation of A, B, and C, given by Equation (67), set ay2(8) = ag2($§)
since aoz(e) varies by only a {ew percent over the shock layer. With the

approximations (77a,b) the result, for small angles and with z  8/§, is

A= Nz2 (1 -1 )2 (98a)
22
BN (1 =1 [2+ (y=1) NzZ (1 ~ 1)2) (98b)
z2 27
C = = (y=1) N2 22 (1 = 1 )2 (98¢c)
82 22
where
N I Va262 202 (99)

ap2(B) (a2=1) (202+y=1)

where ¢ = B/68, given by (90,. With the formulas (98), the integral in (97)

can be evaluated, and the following expressinns result. -
Up(8)(8) = -4 1n (9) + (0%-22) 3 + _5 )
NU, (9) z 2 30222

+ (09-2%) (- 3 +

+ (Y=1)N 12 in (3) - (02-22) (3 + _7 )

z 4 30222
+(0%2% (3 - 1t + 7 - 1+ 1) (100)
802 208 244 1608 160323

At the ghock, z = ¢, the correctior vanishes, Uz(C)(B) = 0. The largest

correction occurs at the body surface, z 1, so that

Un{€)(8) = =4 1lno + (0%=1) (3 +13 + 7 =~ 5
NUZ‘U§(6) 4 302 303 3%

+ (y=1) N [2 in - (g2-1) (3 1
) 602 A0%  BoP 209

+
")
—-
’-
~
'
-
-
+

)] (101)
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The correction factor Uz(c)(d)/UZ(o)(é) is shown in Figqure 8 as a
function of Kg and vy = 1.4. In the hypersonic limit, Kg = =, the correction
factor is approximately -0.0073, and thus the error in the first approximation
is about one percent or leas. As Kg decreases, the correction becomes
slightly more negative, being approximately =0.015 at Xg = 1.7. Rs Kg
decreases further, the correction factor increasee from the minimum negat;ve
v#lue and becoﬁes zero at ks * 1, .Purther decreases in Kg give a rapid
increase in the correction factor, becoming 0.75 in the limit K§ = 0 which
corresponds to linearized theory.

In the hypersonic flow range, the first approximation, obtained by
neglecting UZ(C), is expected to he very accurate. In fact, this is true when
K§ » 1. Wwhen K5 < 1, the first approximation is less accurate. Note,
however, that the correct limiting results for Kg = 0, which correspond to the
limiting case of linearized theory, are recovered. This is true because the
perturbatinon U, itself vanishes when ¢é + 0 and also Lecause the surface
boundary condition V,(§) = -2Ve is enforced on the first approximation itself
{(which produces the first approximation for g;}. The surface boundary
condition is always exactly enforced. Thus, although the linearized limit Kg
= 0 is recovered, the approach to the linearized limit is in error. Because
tne results are correct at Kg§ = 0 and very nearly correct at K§ = 1, the error
in the range 0 ¢ X5 < 1, while greater than for K§ > 1, is less than that
:ndircated in Figure 8.

The ahove observations are born out by the results of Doty and Ragmussen
(Reference 23) for hypersonic flow past a circular cone at angle of attack.
Their approximate analysis w~as analogonus to the present analysis, but the
results could be compared extensively with well-known tabulated results. The

agreement was very good. Thus, whereas extengive tabhulated regults for the
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elliptic cone do not exist as they 1o for the circular cone at angle of

attack, the above error analysis ani the experience of Doty and Rasmussen

justify confidence in the present analysis,
i £. Surface Pressure on the Elliptic Cone, Comparison with Experiment
;;l - The pressure on the surface of the cone is given by (for a = 0)
%4 S ; o P(8.,¢) = pp(Bs) + €Py(8.) cos 2¢ + 0(522) : ' (102)
: where
f! : 8o = 8§ - €5 cos 2¢ + 0(622) (103)
f Transferring the expression (102) to the basic cone gives
p(8c,0) = po(8) + e5[Pa(8) - (dpp) | cos 2¢ + 0(e?) (104)
48 ¢
At the cone surface, the gradient of the basic pressure, pg, vanishes since
vg(8) = 0; that is,
(dpg) = -po(8) vo(é) fug + dvg) =10 (105)
de ¢ a8 ¢
Hence
] p(Bs,0) = pg(8) + £P5(8) cos 24 + 0(e?) (106)
] The pressure coefficlent, Cp, is defined by
i Cp = (p/pPw) = 1 (107)
. (Y/2) M
i Thus it can be written
| Cp = Cpo * £2Cpp COS 24 + 0(e?) (108)
where |
pofd) -1
c L 109a
po _52522___ { )
2
c T 2P5 (8
P2 Ypi;Q) (109b)
39
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The pressure perturbation is given by Equation (47), and since vg{(8) = 0, the

result is

Po(8) = =pg(8) ug(8) Ux(8) + pgl8) Fy (110)

Using the previous results for the first approximation, obtain the hypersonic

similarity form

" Cpy = 2N pn(8) g5 - ag2(8) Us(§) ! - (111)
RO ET B 2 s
where
pp(8) = 1 + y kg2 (eqp) (112)
Peo 2 —g&

and N ig given by (99). From an analysis of the basic cone flow (References

21,22,23) are the expressions

(y=1) 22 [1n 02 + 1_ - 1)

an2(8) = 1 + o2 (113a)
ag2(8) (0%=1)(20% + Y + 1)
cmg ® 1 + 02 ln o2 (113b)
i e

Figure 9 shows Cp2/6 plotted as as function of Kg§ for vy = 1.4, For Kg =
0, the result is Cp2/6 = =2, in agreement with linearized theory. 1In the
hypersonic iimit, Kg = =, Cp2/6 approaches the value -3.811. Thus in the
hypersonic limit, the surface pressure coefficient approaches the form

Co = 2,994 = 3,811 g5 cos 2¢ + 0(e2) (114)
2 ;

Surface pressures were measured on two different elliptic cone models,

each at free stream Mach numbers 3.09 and 6.0, by Zakkay and Visich (Reference

26). The geometric properties of these nodels were as follows:
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Model I Model 11

a = 0.25585 a = 0.2256

b = 0,3562 b = 0.4034

a = 0.320 e = 0.523

Om = 16.36° 9 = 15.56°

€9/8 = 0.155 €5/8 = 0.266

é = 16.64-° = 0.2904 rad § = ;6.28° ; 0.2841 raa

These two models have the same cross-gectional areas for the same station
along the elliptic cone axis. A circular cone with the same cross-sectional
area has a semivertex angle of 16.79 degrees. The experimental data are
compared with the results of the present analysis and also with the analysis
of Martellucci (Reference 17). Martellucci used an extension of the so-callad
linearized'characteristics method. This method essentially uses the
first-order perturbation equations utilized in the present analysis, but takes
a finite number of terms in a Fourier serles zxpansion to represent the shape
of this surface. Martelluccl used the first six terms., (In viaw of the fact
that the Fourier coefficients for an ellipse decrease in magnitude like powers
of the eccentricity, e, as seen in Equation (6), it would seem that a
higher-order theory should be utilized to accommodate the higher-order Fourier
coefficients. 1In this sense, the linearized-characteristics method does not
seem to be entirely rational, at least for the ellipse,) The perturbation
equations were integrated numerically by Martellucci, but the general results
corresponding to the present analysis were not obtained,

Figure 10 shows the pressure distribution on one quadrant of model 1 for
the elliptic cone for Mx = 6.0, which cnrresponds to Kg = 1.747. The present
results agree very well with the data on the major and minor rays (¢ = 90 and

180 degrees), but give pressures that are tyo large in between. The overall
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agreement is good considering that the perturbation theory should be strictly
valid when g9 << §, and this condition is met only marginally. The results of
Martellucci give slightly better agreement with the data, but probably not
enough to justify the numerical computational effort,

Figure 11 shows pressure-distribution data on model II for Mep = 6.0,
which cor;esponds to K§ ® 1.724. This model is substantially more eccentric.
than model I, and the condition £4 <« § is certainly not satisfied.
Neverthelegs, fairly good agreement with the preseﬂ;.analysis definitely
represents the overall trends of the data. The resblts of Martellucci do not
appear to give substantially better overall agreement with the data.

Figure 12 shows the pressure~distribution data on model I for the smaller
Mach number, Mo = 3.09, for which K§ = 0,900, Again the present results give
good agreement with the data on the semimajor ray, but the data are lower
otherwigse. The overall agreement does not seem to be quite as good as for the
higher Mach number Me = 6.0, which might be partially expected on the grounds
that the approximate analysis is less accurate at K5 = 0.900 than for K§ =
1.747., The results of Martellucei give a little better agreement with the
data hetween the major and minor rays.

Figure 13 snows %the pressure-distribution Adata on model II for M = 3,09,
for which Kg = 0.888. The agreement with the present analyses is fairly good
nes:s the major and minor rays, but poor in between. Again, for this large
vaiue of eccentriclty, higher-order perturbation terms are probably required.
The linearized-characteristics method used by Martellucci picks up
higher~orler harmonics in Fourier representation of the ellipse and thus shows
somewhat better agreement with the data between the major and minor rays. 1In

view of the large value ofe,, however, there are probably higher-order
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perturbation terms that are of the same order of magnitude as the higher-order
Fourier harmonics.

The presgurae force on a finite-length elliptic cone is given by

-

+*
F=-[] p(B8:) n a8 (115)
s

where § is the area of the slant face, and

8o = 8 = € cos 24 + A(e2) (116a)
n = eg - 265 sin 2¢ ey *+ 0(e2) (116Db)
sin §
ds = r sin 8. dr dé + 0(ey2) (116:)
p(8c) = po(8) + ePy(8) cos 2¢ + 0(e2) (1164)

When the integration is carried out in the range 0 € 4 < 27 and 0 € z < H,

where H is the length of the cone axis, the result for the cone draq is

+ A

Feep = np(8)A + 0(e52) (117)

2
u

where
A = t42 tan? § (118)

is the bagse area of the basic cone of semivertex angle 8, Thus the drag on
the elliptic cone, ignoring terms of order 622, is the same as the drag on the
basic cone of semivertex angle & having the same length.

g. Elliptic Cone at Angle of Attack, Comparis,n with Experiment

Let the freestream wind be inclined to the axis of the elliptic cone such
that the inclination angle, a, is measured in the x-z plan~ shown in Figure 1.
Let the coordinate gystem remain fixed to the body so that the z-axis is the
axls of the cone. The surface boundary conditinnsg ramain unchanged, The
shock shape can now be represented by (Reference 22;'

8g = B + agy cos & - £agy cos 24 + 0(a2,aey,e52) (119)

where gy is the eccentricity factor asscciated with angle of attack. Assume

T OISO .o s & TP Ny WP R VPP ' RPN S
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a and €2 to be small and of the same orler of magnitude. Since the
first-order perturbation equations and houndary conditions are linear, the
angle of attack problem €nor the circular cone can be superposed with the
elliptic-cone solution at zero angle of attack. The subsequent resuits for

the circular-cone angle of attack problem were obtained by Doty (Reference 22)

j and Doty and Rasmussen (Reference 23) by an analysis very similar to the
{
j

foregoing analysis for the elliptic cone. The angle-of-attack shock

3
:
b

eccentricity factor was found to have tie form

-1
3+ 2023 - 4{1402)} - [a{a?2-1)V2:  1n 1y + (g2-1)V/2y

k-

A

E

~1 , ?

5 - 201+32)[1 + 402} ~ ‘c(a?-1)'/27  An To s (02-11/2) 3

vy+1 3

1

where 0 is given by (90) as before. This function 12 shown in Figure 3. 3
L

The first-order expansion for the flow variables outside the vortical f

£

4

layer can be writter as :
1

ulB,9) = ug(d) + atg(d) cos » + €49Us(B) cos 2¢ (121a) X

3

vi0,0) = vg(d) + ava(?) cos § + €3Va(8) cos 29 (121b) f

w(d, d) = GWe (D) sin b + €aWpr () 8in 29 t121¢) j

i

PLO,3) = paldY » aR{®) cas & » £5R2(9) cos 24 (121Q) 1

1

P(3,8) = ppalH) + AP () ons &+ £aP5(9) com 24 (121e) }

i

The upper case variables with the subscript zero nntation pertain to the i
{

!

spution for flow a* anale »f artack nass a cirzular cone.

The pressure on the hody sarcface i3 given by

i

P19-,3) = po03) + Pplf) cos &+ ELP5(8) cos 2¢ {122) 3

1

where {
!

Pai8) = =pa(8) upt ) Ua(&) + pgl(8) Fy (123) i

1

) i

Ty & v V231 = gaill ~ 553872, 2(3) {124) i

17 1
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Unlb) = -2 + (1-gq) i 4c5 + 03 - g+ 1 - In(o+ /GZ=1) ) (125) 3
Vb o Y+1 2 -
2 7'02-1

which is analogous to expression (110), 1In terms of the pressure coefficient,

is
Cp = Cpo * & Cpo €Os & + €3Cpy 708 2¢ (126) =
where . . . . i . ;m
Coa = 2N pa(B) pg(é) ! ;o) - ap2(8) Ug(8) ) (127) ]
5 EEY po  pg(3) ag (5) VoS -

In the calculations presented in References 22 and 23, the ratios pg(68)/pg(B)
and ag2(B)/ag2(8) were set equal to unity consistent with their
"congtant-dengity"” approximation.

The angle of attack perturbation nressure coefficient given by (127) is
shown in Figure 14, When Kg§ = 0, the limiting result of linearized theory is
recovered, cpo/d = =4. When Xg = ®, the limiting hypersonic value is Cpg/d =
-4.0836. Near Kg = 1, there is a small 4ip in the curve, As Kg approaches
zero, there is a small overshoot in the curve which does not occur in the
exact theory. Over the range of Kg, the value of cpo/é does not differ
greatly from =4. 1In the hypmersonic limis, Kg = ®, it is possible to write

Cp = 2.094 - 4.984 (a) cos ¢ = 2.811 (£,5) cos 29 (128)
3 3

correct to first order in a and f, Exprassion (128) indicates that a/§ and 4

52/6 should be gufficiently small in order for the perturbation analysis to be

valid, -
The present results for surface pressure at Mg = 6 and angles of attack

of a = 5 and 10 deqgrees are shown in Figqires 15 and 16 for models I and II.

The regults »f Martellucci are shown for comparisnn together with the

experimental Aata nf Zakkay and Visich for a = 10 degrees, which is a large

enough angle =f attask o make for a lemindiag comparison.  The present
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results agree well with Martellucci for both models for a = 5 degrees, the
worst agreement being on the leaward ray, ¢ = 0 degrees. For a = 10 degreas,
the two results are in fair agreement for the small-eccentricity ellipse,
model I in Figure 15, except near the leeward ray of the elliptic cone. For
the large-eccentricity ellipse at a = 10 degrees , model Il in Figqure 16,
agresment between the two results is good only near the windward ray. For
model fI at a = 10 degrees ;.ﬁhe éombined large values-bf a/8 = 0.607 and 62/5
2 0.270 render the firsteorder perturbation theory invalid, especially near
the leeward ray where the separate perturbations are additive.

The normal-force on the cone is found to be

-+ A
Ftey, = Cyg 0 Y MaZPoA + 0(u2.622,ae2) (129)
2
where the force F is defined by (115), A = nHZ tan28 is the base area of the

basic ¢one of semivertex angle &, and

SNg & l ipn (130)
2 ¢

is the a-derivative of the normai-force coefficient.

The moment about the cone vertex :is
+ +* -

M=« [] p(6c) £ x nads (131,
s

Evaluation of this integral gives

> A
M = e,/Cyq @ Y MuZpaHA] + 0(a2,652,653) (132)
2
where
CMa = 2 Cng = = 1 Cpa (133)
3 36

is the a-derivative of the moment coefficient.
For completeness, the drag on the alliptic cone, (117), can he raewritten

in terms of the axial-force coefficient. Tt the base pressure is reckoned as

T
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Pw then

> A

F.e, = Cp Y Mu?Pwh + (a2,e52,a€p) (134)
2
where
Cp = Cpup = (Cmp) 62 (135)
A p0 _gn
2

and cpp is given by (113b;.
The ratios Cp0/5 and cp0/62 depend only on Kg and Y. They are

insensitive to Xg when Kg is large., Thus when Kg is large, that js, for

.hypersonic flow, the main effect of the cone cross-section shape is determined

from 8§, For slender cones (small H,), +ake from (3a) and (8a) the alternative
forms

6 = Yab [1 + 0(e2); (136)

5= b Y1-e [1 + 0(e?);
The cross~section area of an ellipse is proporticnal to the product ab. Hence
when the cross-sgection area is held fixed, the force coefficients are

independent of the ercentricity e when terms of order e?

are neglected.

On the other hand, when b is held fixed, then § varies with the
eccentricity to the first power., The normal force anid moment are independent
cf § when Xg§ is large, bhut Cp decreases wlth increasing e when b is held
fiv:d., Thus the lift-drag ratio increases when b is held fixed and e
inecreases,

h, Concluding Remar«s

General flowfield results for the hypersonic flow past an elliptic cone
have been obtained, The results are valid for large Mach numbers and small
stream deflections such that the hypersonic cimilarity parameter, Kg§ = Mal, is

fixed in the limiting process. The results are more accurate for large Kg (Xg

> 1), but the proper linearized theory result is recoverad when Kg » 0, The




accentricity factor, e, in the analysis must be small in the strict sense that
c2/6 << 1, Comparison with experimental results indicates that 62/6 need not
be very much less than unity, but merely moderately less than unity, for
acceaeptable engineering results. 1In addition, the angle of attack should bhe
such that a/6 << 1 in the strict perturbation sense. An important feature of
the analysis is that the basic circular cone angle, §, has been well Aefined
in terms of the geometric properties of the elliptic cone.

The methodology of this analysis can be extended to other cross-section
shapes. Each term in a Fourier expansion of the cross-section shape can be
handled i{n an analogous manner and accurate, approximate analytic results
obtained. Strictly speaking, however, the cross-section shapes should deviate
only slightly from a circular cone in order for the perturbation analysis to
be valid. Moreover, successive Fourier ccefficients should not decrease in
powers of the basic expansion parameter, for then corresponding termg of
higher-order perturbations become egqually important.

2. ARBITRARY CROSS~SECTIONS

Here more general conical) bodies are considered, whose cross-sections
deviate by a small, but arbitrary, amount from a circle. The cross-section is
expresged in terms of a Fourier series for the polar angle of the conical

body, 8;, as a function of the azimuthal angle ¢,
b = § + 1 e, cos (n($ - $,) (137)

Here § represents the half-angle of the hasic circular cone and the € are
parameters that describe the deviation of the cross-sectional shape from a
circle, For example, €, measures the elliptical eccentricity. This
perturbation scheme asgsumes the body deviates slightly from a circular cone at

zero angle of attack and thus the ¢, are presumed "o be small compared with 6.
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The angles ¢, describe the relative phase of the various Fourier components.

In what follows, the governing egquations and boundary conditions for
these conical flows are first derived, Next using the "linearized
characteristics method of Ferri et al. (Reference 13), the small disturbance
equations and the simplified form of the boundary c&nditions are derived. A
"weak polar crossflow" approximate solution to these equations is then
obtained. Further results are found using the hypersonic small disturbances
approximation, Comparisons of these results with experiment ave then given.
The stream surfaces and pogsible waverider geometries that derive from these
stream surfaces are then discussed. The section ends with some concluding
rem;rks.

a. Governing Equations and Boundary Conditions

The equations expressing conservation of mass, Newton's second law, and

the first law of thermodynamics (in both entropy and total enthalpy form) for

an inviscid, adiabvatic, steady flow are

+>

7« (pV)

L4 >
pvV + Tv = =Vp (139)
L 4
vVevVs =20 (140)
»
Ve 7 (h+vZ/2) =0 (141)
Take the state equations to he of the form
p=o{p,s) (142a)
h=nh (p,p} (142b)

Equation (141) can be integratad to give the result that the total enthalpy
n+v2/2 is constant along streamlines, Since the freestrseam conditions are
assumed tn be uniform, the total enthalpy is constant everywhere., Tf the
pressure and density are eliminated from the continuity and momentum

equatlions, then
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i
E
=4
1

R R

+> + +
0= Vey cy =+ (v W) (143)
a?
(3h) . -
1(3p) Vs = 1. Vw3 + 3p, +1 VeWwW  (144)
o 33 (3h) 2 (3h) aZ

It is convenient to adopt a spherical polar coordinate system {(r,0,¢)
aligned with the basic circular cone with origin at the cone vertex (Figure
17). 1In this case, Equations (141), (143), and (144) become, assuming conical

flow {e.g. 3/3r = 0),

aZ = y=1 (vy2 - w2 - v2 - w?) (145)
2
0=u(2 -v2+w)+veotd+ (1-v2 3y (146)
aZ a2 8

0 =v3u+ _w 3u-v:-wl (147)
e sin 8 99
23 38 = u du - w éﬂ + w dv + uv - w2 cot B (148)
YR 36 a8 30 sin 9 3¢
a_2§=-u}i§-v£+vsinSﬁ*’uwsine
YR 3¢ b 3¢ 38
+ vwecos 0 (149)

Here Vy is the maximum attainable velocity for the given total enthalpy hy,
Vy = Y2hp, and a is the sound speed. Bgqua<ions (145) through (147) also

asgume a perfect gas model for which Equations (142) reduce to

P=pPe ( p )Y exp (5=8x) (150)
P Cy
h= Y p (151)
Y=1»
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The boundary conditions for this problem include the shock jump relations
and the condition of zero mags flux through the body -- the so-called tangency

=L condition. The shock jump conditions can be written

a -

+ +>
DQVQ . ns a Osvs * ns = m (152)
. . > - + - :
: MVe + PwNg = MVg + pgng {153) '
| M (he + Ve?) = m (hg + Vg2) (154)
s 2
!

Here the subscript s again refers to conditions just downstream of the shock

~

wave and ng 18 the unit normal to the shock (Figure 17). The freestream

-
conditions are taken to be constant with velocity Ve at angle of attack a in a

plane at arngle ¢® to the X-Z plane, i
| jr
i + " . - E
: Vo = Vo [cOos a e, + sin a cos ¢pey + sin a sin ¢éq ey] (155%5) ]

The tangency condition on the body can be written j

+ - ;
Veng=0  on body (156) ]
Here n, is the unit normal to the conical hody. . %
The component of the freestream Mach number normal to the shock wave, ;
Mwopn, 18 given by %
* B + * (157) :

Mon = Me * ng i Mo = Vo

Aco

For a calorically perfect gas, the shock juwp conditions can be rewritten

a

<>

Ve'Ng = pg = (Y1) Mw? (158)

s Po  (Y=1) Mop® + 2

Vg ng

’ ry > -~

Vo X Ng = Vg X ng (159)
Pe =1+ 2Y (Mn;2 - 1) (160)
Do Y+
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As = In  ((2YMwg2 = (Y=1)) ((y=1)Mmy? + 2) Y (161)
Sy y+1 (Y+1) Mop?

For conical flows, take the equations describing the shock wave and bedy

as

shock wave: 8= 8g (¢) (162)

L
L

body: . . 8= 8. (), _ (163)

In the cirect problem being considered, 9.(¢) is given and 68(¢) is to be

determined. The angles { and f are introduced so that

et e Ay o shes

' ng = cos §{ eg - Sin { ey (164) ;
i ¢
i

1

. . - !

n, = cos £ eg - sin £ ey (165) ;

where ) o
tan g = 1 495 ., tan § = 1 as. (166)
sin 84 4¢ sin 8, d4¢

The expression for the normal componeat of the freestream Mach number can then

be rewritten

(167)

D
G
J
H
1

Mep = Mo (- COS @ sin
+ sin a cos @ cos 7 cos (¢ = $p)

+ sin a sin g sin (¢ = ¢p).

———— . wA A

Equations (158) and (159) can be solved far the three velocity components
downstream of the shock wave in the following form

g = cos a cos 9 + sin 1 sin 3 cos (& - dg5)
Vs (168)

Vg = =cos a sin 8 + sin a cos % cas (9 = )

Ve (169)
- 2 (1 - 1 )icos25(~cos 1 sin 3 + sin a cos 9 cos ($-¢p)!}
v Map 2

+ 208 § sin £ sin a sin (6-dg))




&
IS
H

—— TP \F A

wg * =sin a sin (¢=¢g) (170)
+ 2 (1~ 1 )[cos { sin g (-cos a sin B + sin a cos B cos(¢=-¢p))

+ sin2g sin a sin (¢=dg) ]
Here 6 is to be evaluated at €5(%). The tangency condition on the body

becomes A

0 = vy cos § - wy 8in § ' (171)
with 0 evaluated at 6.(¢).

Equations (146) through (149) give four non'inear partial differential
equations for the four unknowns, u, v, w, and s. Equations (161) and (168)
through (171) give five boundary conditions. Thus the unk%nown shock shape
85(¢) can also be determined. Once the velocity and entropy are known, the

pressure coefficient, C,,

Cn = _P= p=_ (172)
’ l PaoVes
2
can be determined from
Cp= _2__ {(yy? = V2 ) ¥=1 exp (- g=80) - 1} (173)
YMa® Vne = Vo R

It is convenient to introduce the following normalized variables,

-
ViE¥p P R8T Se PP A=A (174} 3
Voo PV Cy Px Voo 3
Dropping the bars for simplicity, Equations (146) through (149) can be 1
rewritten as,
0 =u (2 ~ve+ w2) + v ot B+ {1 - v2) EX + (1 = w)
a2 aZ 38 a?
. 1 3w - vw o v + Iw) (175)
sin 8 3% a“~ sin )} a ]
0 = v du + W Su - v? - W’ (176)




__a2 98 = ~u du - W idw+ w3V + ouv - w? cot 6 (177) i
Y{y=1) 2386 0 6 sin 6 Jd¢

. a2 88 = ~u du - v 3v + v s8in 8 3w + uw sin 6 vw cos 9 (178)

Y(y-1) 3¢ 3¢ 3¢ 39

where a2 is given by

i 2 2 2 2
i a2 = y=1 (Vg2 - v2, , w2 = 1+ _ 2 (179)
E 2 (Y=1) M2

The boundary conditions on the velocity are still given in REquations (168,

“hrough (171, with the left-hand side of Equations (169) and (170) replaced by

u, v, and w, respectively. The boundary condition for the entropy s becomes

v
s = In {(2Y Maop?=(y=1)) ((Y=1) Mon? = 2, } at 8 = 85  (180)
Y+1 (Y+1) Mop?

bs Linearization About Cone at Zero Angle of Attack

. e A ol oo e i et St irbrs

Assume that the flowfield is conicil and deviates slightly from that for
flow past a right circular cone at zero angle of attack (Figure 18).

Furthermore, expand the flowfield variables in a Fourier series in the

L s s b e

azimuthal angle ¢,

u=upy + a Iglh) cosl{p~=dg) + L £, Uy (8) 25 (n{é=3,4)) (181, é

v =uvg +aVyld, coslo=dp) + L €5 Vp (93) cos (n(d=~dy)) (182, :

n=1 ;

i

- ;

w o= a Wo(8) sin(¢p=¢ps + T €4 wy (9)n sin (nlgp=¢q)) {183y

n=1

i,

* i

8 =8y + a Sy(0) coslo-¢y; = T £, Sy (3) 708 (n(d=0,)) (184, i
n=1

g = B + a gy cosld=3p) + Lo, ay con T d=dp))

61




Frure ai.

R

b




B e e

Lower case quantities with a subscript zero refer to the basic flow at zero

angle of attack past the circular cone. The deviation from this flow due to

angle of attack a and deviatlons of the cross-section from a circle (¢g,) are

described by the U's, V's, W's, and S's which are functions of the polar angle

8 arnd remain to be determined.
Substituting these expansions into the governing equations and boundary j
condition, and equating coefficients of powars of a, tn to zero, provides a

hierarchy of problems, the first being that for flow past a right circular

|
-
§
|
|

. cone at zero angle of attack. The governing equations for that preoblem are

i 2 ug + cot 8 vy + dvg = (vp)2 (ug + dvg) (186)
d agn 49
0= v d\.\n - VOZ (187)
ae |
1 !
1 ag? __ dsp = - up dug + up Vo (188) i
Y{y=1) a8 ae
i with
a,2 = =1 (Vy? = ap? - vg?) (189)
2
The assoctated boundary conditinns are
A= B8 up = cog " (190)
vi vyl = cos? 0)
sin 9
2 ain2 2 g1n2042) "
g = 1In {(2Y M 8in<0=y+1)((Y=1) Mo 8inc0+2) ] (191)
Y+1 Y+1
9 = & vy = 0 (192)

The nquatinnp for the first order (e.u. of order a, €,) problem are*

*In the cane nah corraapandiag o tin frungtraam bhelny at anule of attack n,
e o otiven by Foguation (193) g8 incarract an that the term n? W, cee B

Anea o0t vanls oat, taRtead, hecomes S, ocne 0

ry
Z NN ) . .« ) Bt |




20U, + cot 6 V, + dVy + n2W, csc 8 1193)

"
<
E
N
<

n - 2up Ay +avy - 2 Ay dvg
ag ag 4e ap 46

+ 2 Vp dlnvg) + (vg) {2 upg Vq)

49 ag ap
.-__’ _ ) OﬂVOdUn+Vndun-2VOVn
o a8 46 (194)
I
- - ap?  dspy = up (V,, - dup) (19%)
. Y{y-l) 49 40
- anz Sh, = ug U, + vy Vy + vy sin 3 dwW, (196)
Y(vy=2) a6
+ 4 (uy sin B + vy cos 8)
0 = Ay + 1=1 (ug Uy + vq Vn) (197)
ao ? an 80 an ao
The assocliated boundary conditinns are
= B: Uy ™ -gg (duy + 8in 8) + sin 8
48
| Vo = =gp (dvg + vg cot 8 2 = (Y~1) Me? sin20 )
¥ as 2 + (Y=1) Mo? 8in%d
4+ vg oot 92 - (y=1) Mq? 8in29 )
2 + (y=1) Ma® 8in<d (198,
Wg = g9 _2_ (1 - 1 D=1
Y+1 M@z sinie
8y = =gg (dsy - 4Y(Y=1) (MxZ 8in20-1)2 cot @ ) (199,
40 (2YMw?0in%Be(Y=1))( (Y~1)Mup?8in<0+42)
- __AY(Y-1)(Ms? 8in28-1)2 cot 6 )
(ZYansLn59-'Y-1;)((Y-1;M.251n29+2)
Uy = ~gp (dup + sin D)
40
Vp = =an (dvg + v cot 0 2= [qz]) Me? ein?0) (200,
A0 S o+ ((=1) My’ ARiN"H

64




Wp = 9 2 (1 - 1 )

;:? M@z sinze
Sp = -ap (dsp - __ 4Y(Y=1)(Mx? sin?9-1)2 cot 6 )
as (2YMe?81n%6=(Y=1)) ((Y=1) Me? sinb+2) _é
8 = §;: Vo = O (201) |
v, = 2ug (202)

revey

Equations (194) and (195) can be used to ghow that S, is constant and that Vv,

PERER

equals-dun/dﬁ. The result that Sh is constant is not valid on the body ; i

surface. The body surface is a streamsurface and the antropy must be constant

there. The perturbation approach gives s = sq + aSy (cos (¢=¢g) + [ €, S, cos

PPy R

(n{$=¢p)) which is not constant on the body surface. As a consejuence there
is a thin payer near the body surface, the so-called vortical layer, where the
results of the regular perturbation scheme are not valid. Mungon (Reference
27), Melnik (Reference 25%), and others have studied conditions in the vortical
layer and have shown that the results ohtained for the pressure and azimuthal
velocity by means of the regular perturhation approach are valid in the

vortical layer, while the results for the raiial and polar velocities and

B e e riovs m s & o A sl ol | 1o mohdct S & M o b & Lmd Lk

entropy are not valld there. The methods of singular perturbation theory
allew corraction of the inadequacies of tha ragular paerturbation approach near
the body and thereby provide a unifnarmly valid solutinn, No attampt is made
her - to deal with the vortical layer as Lt will not affect the results of

i =mrest in this report,

Fauatlon (196) @an now he rewrittan

- ap? gpmd (4 W, osin 8) + ug (Uy + W, ain @) (203)
riy=1)vy 49 vy
sriteh s e format oy Integuravoed ko give
/2 _1
apn '~
S (=vpy uin 9) (2n4)
g 4 0, eln - 7=

) ERERET 2 V3 . 3
) bl p A e ds ) ,*




2Y=3
8 Y=-1
. j an 40
805 Vn (-vg sin 9)1/¢

= -F, (9)
noting that (U, + W, sin &) vanishes at 3 = B. FEliminating V, and W, from

Equation (193), results in*

A%y, + cot & dup + U, (2-n? csc? 8) = nan(B) csc?@ (205)

462 a6

- d
———— e — . . _,

+ 2 vgug QUp + (vp)? (U, + 42Uy = 2(up + dvpu Ap + 2 Vp dvq)
ap ap a9 ap 39 ds ap vy dé

with boundary conditions

8 =8;: U,= -gg dug + (1-gg) 8in 8, n = 0
9

o8

= =gy (dug + sin 8) , n>o0 (206)
46

B e A L A A D ROl | e ¢ Uikt BT €

dUn = ~gg (dvg + (1-gp) vg cot 9 2 = (y=1) Mu?8in?8 , n=0 (207)
a8 a8 2+ (Y-2) Ma?8in?®

= -gy (dvg + vg cot 0 2 = (Y=1) Mw?sin2g), n > 0
a8 2 + (y=2) Mau®sin®®

0= & = 0 . na=0 (208)

[+ >3
2}

= 2up , n>o
Oonce U, is Adetermined, W, follows from Equarinn (204) and v, follows from

vn » (209)

G { O
32

The disturbance sound speed a, can be ovaluated from Equation (197}, The

constant 8, is given by Equation (198),

e

—————

hasomen cae?f 1y, and the term

'Again, on the cass n=N, the rarm n?spn? 0 ",

n€r, c8c?Q bacomes Fn cas?l,
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The pressure coefficient Cp can also be expressed as a Fourler series

expansion. Substituting for V and s in Equation (45), provides

]
Cp = Cpp * aCpp co8 ($=dg) + I €,Cpp cos (nld=dy)) (210)

n=1

where
o
Yy-1 . . .
cpo = _2__ {(¥y?-ug?-vp? exp (=sg) =1} (211)
YMao: Vys ~ 1 Y-1
Cpn = -(Cp0 + _3_7) { 8o+ 2y upUg + VQVS} (212)
Y Moo Y=1  Y~1 Vyceup<-vy

Cs Weak Polar Crossflow Approximation

An approximation introduced earlier by Rasmussen (Reference 21) that
allows closed-form analytical results to he obtained is exploited here. These
approximate results are surprisingly accurate over a wide range of conditions
and are particularly simple to use. The approximation {nvoked is the
“weak polar crossflow approximatinn” corragponding te the limit vy/23+0, The
term (vo/ao)2 varies from its maximum value at the shock to zero on the body,

0 ¢ (vp)2 ¢ (vg)2 = (y=1) M.28in2 9 + 2 (213)
a0 an ghock  2Y My 8in?8 = y + 1

FOr Me €in & large, the upper hound ton (vo/ao)2 becomes (Y~1)/2Y (= 1/7 if Y =
1.4). 1Ignoring terms of orider vy/as in the governing equations reduces the
equ~'.ions to forms that can be gsolved analytically in terms of known
f a-tions,

Tgnoriag terms of order !vo/an)z in Equatior (187), the aquations
averning flow pasl. a right circular cone ar zaro anyleg nof attack and yaw,

Equations (187) tarough (130}, can b reduced to

dzun ¢ cot 9 Aupg + 2upy = N (214)
40 AN
va " Aup (215)
A1)

£
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[ | y“_\" ;"A,__" W

N

b s 12 Sl S LI

W ———




a0 = Y=1 (V2 = up? - vg2) (216)
2
Y
sy = 1n {(2YMe28in2B ~y+1)((Y=1)My28ina+2) } (217)
(y+1) (Y+1)Mo€3in<B
with boundary conditions
6 = B: ug = cos 9 (218)
dug = - y=1 (Vy2 - cos?0)
a8 Y+ ~sin 8
8 = §: dup = 0 (219)
48
Equation (214) is Legendre's equation whose solution can be written
ug = AgP4(u) + BgoQq(u) (220)

(u= cos 6)., Here P, and Q, are the legendre functions of the first and

sacond kind, resgspectively. 1In particular,

Pe(u) = u, Qq(pp * 3 1In (1+y) - 1 (221)
2 1=u

The boundary conditions, Equatinns (218), allow the constants Ap and By to be

evaluated, The results are

Do = 1+ [(1=u2)00(1) (1 = y=1 Vp2 = 12)]
1

Y+ -y b= g

(222)

Ep = = (u(1=u2) (1 ~ y=1 vy - )]

Y+1 1+ TR 1PN
Here ug = cos ” The cone angle 5§ (= cos™! pp) %ollows from

0 - 171 vl 9y

(494) - dy Y41 ey u (223)
e, "= A=l V- 2

Y¢#1 1 - u‘zJ U=y

Now apply this weak crosesflow approximation to the perturbation problem,
Equatinn (205). Equation (205) contains terms on the right-hand side that are
order (nnvn/uoz) and (vo/dn)7 relative o terms on the left-hand side., The

terms of order (vp/ap)? on the right=han! gide ara uniformly -~a1ll enmparad to

like tarms retained on tha laftehant a{te {0 thins weak polar crosuflow

bt b
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a2 Bl

. approximation. This is not the case, however, for the term of order

(ugvp/ag?). Specifically, comparison of the term 2ugvg/ag? dug/d6 on the

PRSP PP N

- right-hand side with the term cot 6 duU,/d® on the left-hand side, demonstrates

s dnihlc

that their ratio varies from a maximum at the shock to zero on the body. The

1 . value of the ratio at the shock is given by j
- ' e

y : | | (2 (gp)lvg)] = (Y+D 11 = (y=1)2(1 + 2 )] (224) 'g
‘cot 8 ag ag O=8g SE2Y) (Y+1)Mx?8in®g _E

‘ which is not small compared to unity., Nonetheless, the term 2(ugvg/ap?)
dup/d6 on the right-hand side shall be ignored for the following reasons. :
*irst, this term is relatively important only near the shock. On the body it
is identically zero. Second, although the resulting governing equation is
somewhat inaccurate near the shock, the solution U, is still required to
satisfy exactly the bcoundary conditions given by Equations (206,207). The
results obtained by ignoring this term compared well with experiment and other F
more accurate numerical solutions.

Thus, in the weak crossflow limit, Equation (205) reduces to*

e kb anttie

a2y, + cot © dUn (2 - nZcac? 8) U, = n? csc? 8 F, (O) (225)
46 48

The boundary conditions remain unchanged and are given by Equations
(206,207,208), Equation (225) iz formally the nonhomogeneous associated

Legandre equation of order one and degree n, If {t is noted that Q1™(0) is a

o ekt el lba ik

8. rtion of the homogeneous aAgiation**, where
n’2
Q4" = (=)D (1-p2) a9 , u = cos B (226)
4 4N

ther the aclution of (229) can He writtan aa

e ot i Al s vl A dahd 0

*pgain, when ne0, the tarm n?cec?® U, hocomas csc?0 1y and the term n?cec?d
F, becomes agc? Foe

**rive function sin 7 is Alsn a coaplene-vary golution for the case n = 1,

69
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Radidne i i

B ] g |
UL(8) = n2Q," (8) | a8’ ! Fn (€") cos O" A
8 oM €(B') ain 8' @° 3
3 -
E © QD (cos 6") d8" + Ap04"(0) | ag’
y 6 04" <(8') sin 6"
E + B, 04" () (227) =
Ew The boundary conditions, Equations (206,207), allow the constants A, and B, to %
.! be evaluated as ;
HE 3
Sl An = [8in ® 49y U, - sin 0 Q4™ duy] (228) )
s a9 48  gag :
By = [Up ] (229) 3
21" 9ap L
Equation (208) allows determination of the ratiec g, of the shock displacement
to the body perturbation,
\ .
The integrations required to evaluate Equation (227) for Un(9) cannot be ;
carried out in closed form, For this reason it is useful to consider a :
further approximation and to restrict attention to slender hodies. 1In this i
way, explicit results can be obtained which are quite useful. %
4, Hypersor.ic Small Disturbance Approximation; fomparison with 3 E
L1 .
Y .
x Experiment i
1
' Consider now slander hodiaes for which, §, 8 +# 2; in order to retain the %'

essentially nonlinear character of supersonic-hypersonic {low, Also require M,

to he large go that

RO

Kp = Me sin O (23m

. e dde e o e

is finite. The limit 0 + 0, Mep * @ such rthat Ky = Mg gin 0 is finita ia the
hypernonic small Aiaturbance approximatinn ‘imit.
In the hyperaonlc amall disturbanc« approximation, the solution for flow

past & right circular cone at zarn anglag of attack and yaw raduce to

7
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Equations (76). These results allow evaluation of the function Fn(8) that

appears in Equation (204). Ignoring thae variation of ap across the shock

layer in comparison with the variation of vg, provides

172
Fp = =8G [1 - {Kg2-Kp } ] (1=gg) , n =0 (231)
Kg“=Kp
8G [ (Kg2 2)1/21 0 (232)
= BG [1 - (Kg*=K 9n Q> 2
where '
G = (K 2-1)2 (1 + y=1 K2 (2- 5h§)) (233)
Kg® (2Y Kg2=y+1)((y=1) Xg+2) 2 Kg

In this hypersonic small disturbance theory limit, Eguation (225)

becomes*
a2y, +
49

au, -
ae

2
U, = n* FL{0) (234)
n 7 n

!
@i
A%

with boundary conditions given by Eauations (206,207,208),

8=B: Up = -gg 82 +86 , n=0 (235)
9
a -gy 82 , n>0 (236)
8
dug = +gp (1 + 82) = (1 = ga)(1 - 62) 2= (y-1) Xg? , n= 0 (237)
46 87 82 2+ {(y=1) K¢
=g, (1 + 82 +ay (1~ 82) 2= (y=1) Ka2 , n> 0 (238)
9% B2 2+ (y=1) Kg
o=6s dUy = 0 (239)
a9
A, = 2 (240)
as

Equation (234) has been integrated explicitly for n =10, 1, 2, 3, 4. while
the integrations are somewhat laboarious, thera i(s no particular impediment to

cangldaration nf larger n, The rasulta for the f{rst five valums of n are

qiven halow,

*Again, when n = 0, the tarna n? Hn/02 an 2 l-'n/!)2 hecone un/ez and Fo/ez,
renpactively,
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R 4
: 172 1/2 3
Up = =BG(1-gg){-1 + B+ 3 (82-82) " "+ _ 202 + 62 1n (B+(B2-82) '°)) 3
0 0 6 & 8037 wasrTr e 3
48 4 B4-§ 49(R=8¢) B+(0<-87) 3
. £
+ Ap0=' + 349 (241) ’i
1/2 1/2 i 3
Up = B Ggrl=1 + 8 +3(82-62) "+ _ 2082 + 62 1n (B+(g2-82) ) .
46 4 B2-382 46(82-52)172 8+ (04=§<) . g
[ + Ag0=1 + 5,0 (242) 3
¥ .
- : - - 5/2 -

f U; = B G {62 ~ 84 - 04(B2-62) + 2 (92-82) + 04 2
, § 282 2p2s? 5 62(82-62)772 282 g
j 1
! 3/2 172 E
- 2 (362+4262) (82-52)" " . 924242 (92-52) 3

' 1567 (B-§4)172 6 gZ-§2 f
1/2 172 B 53
- 84 (tan~1 (g2-42) - tan~! (92-62) )} L
26(8Z-52)172 Y 7 8 :
+ 2672 + 5,02 (243) ‘%
Uy = 8 {83 - @b 6 (02-62) " 82-62)" + §2 82-62 ¢4 b
3 =86 - +3 -42) ((8°-82) + 62(82-52) - ¢4 3
= 2862 262 BZ-42 3 12 8 3
1/2 B ]
¢3¢ In (8 + (82-62) ')} -
16 (B2-62)7172 8 + (82-62)772 g ;
+ 23073 + py03 {244) :
3/2 3
Ug = B Goq {09 - 40302 + 252) (82-42) - _e8 :
L 15 (B28)172 34287 i
!
1/2 3/2 2 :
- 88 ean™1 (02-82) T 4 2(02-62) " ((62-62)" + 2(62-82) + 62) |
483(g2-g) 172 &2 (B=82)1/¢ — 742 5 3 ;
j
1/2 3 8 %
- 1 (82-62) ((32-62)" + 362(92-62) + p244)) :
482 FTE2 7 5 ) :
i

+ Ag0™4 + py04 (245)
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The constarnts of integration A, and B, are given by

Ap, = 3 (U - 8 dug) , n=0
’ =g (u, - 84du) , n>0 (246a)
2 n a6 6=8
By =1 (Upg+06duy) , n=0
28 a8 g=g
; = 870 (u, + 8 duy) , n>0 (246Db)

| 2 n d8  g=g

Having determined the Un, cne can then compute Vn, wn, An, Cpn' and qn
from Equations (194), (204), (197), (212), and (240), respectively. Cf
particular interest is the shock--body shape relation 9, surface pressure

coefficient (C ©), and flow streamsarfaces. The first two quantities carn
pn

be easily measured while the latter guantity is useful in developing

waverider geometries.
Differentiating Equations {241)through (245) with respect to 8, results

in expressions for Vg3, V¢, Vy, V3, and V4. Evaluating these expressions at ]

= §, allows determination of the ratio of the hody perturbation to the shock

perturbation, g,. The rasults are

1_=1+G6 -2+ 3 In (g + (92=1)1/2;
T=qgp N R{g==1)"'"<
+ 02-1 ¢l=1 2-(y=1) K2 (247a)
4 4nc 2+(y=1) Kg°
1= 1 (247b)
99 1-9n
1 =G~ g(o2+2) + g tan=! ((02-1)1/2y) (247¢)
9, A 200%-1)T172

g

+ 9814 0941 15240 4 9229 2+(y=1) Xg2 )
29 40 0? a? 2+(y=-1) Kg
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. 4 2. 2.4)1/2y;
1 =5 [3-3 a*-9 o 9 g In(ot{o%=1) )i
33 3 76 32 32 (0Z-1)177
+ 3 0%1 + o841 (0241 + o2-1 2-(y-1) X 2) (2474d)

4 ol 40° o 02 2+(y=-1) Kg

ST T T e

, 1 =G [1_+ 02 -205+ g’ + 8(c2-1) (1303 - o5 + 230)
j g 20 2 2 an 16 15
: + o tan™1 ((02-1)1/2)) + ¢8.9
t 2(g2-11172 _ o>
i
' + 0841 (02+1 + 02-1 2~(y=1) Xx.2) (247¢e)
| 403 0 0 2+(y=~1) Kg*

where ¢ is again the ratin of the shock angle :0 the cone angle for the
; unperturbed right circular cone, o = 8/8 and is given by Equation (77) as a
i functinn of K§. Typical results o'tained from Equations (247) ara shown in
Figure 19 for Y = 1.4, “ote that the linearized theory result a, = C is
obtained for Xg = 0. Also as K, incresses, the relative distortion of the shock
shape decreases. Other nwnerical results, not shown here, show that these

results are not very sensitive to changes in y for Y in the range of 9/7 to

5/3.

Dawew -

Fquations (216) through (212) can be used to evaluate the surface

By T

pressure coefficient., Rewriting these results in the hypersonic small

disturhbance theory gimilarity form,

Cn ™ CQD + a Chn cos (d=¢g) + T 2p Cpp C08 (n(p=¢,)) {248)
Ei 8 § né g
provides, on the surface of the hody,

Con = 1+ (Y1) Kg2 + 2 1n (y+1 + 1) (247a)

¢ (y=1) Kge + 2 2 kg2

Cppn = -Y(gga + 2 ) gnl 4(xg2-1)2 (249pb)

3 5 YK4e (2YKpZ~(y=1)) ((y=1)KgZ+2)
+ ugté) (kg2 )
59, 1 + y=1 Kgé(1+21n ™)
2
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where ¢ and the g, are given as functinns of Kg by Equatinns (77) and (247),
respectively. Also, for the angle of attack case {a=0), g in this equation ?
becomes -{gg=-1). The radial component Up of the perturbation velocity tis

given on the body surface hy

[ i
1
E
3
i
:
. %
. (q2-111/2

Up(8) = oG{o1 - 3 (a1 - 1 in (g + (g4-1) )}
8(gp-1) a (02-1)172 i
- 0241 - (92-1)2 2-(y=1)K2 (250a) :

2 202 2+(y=1)Kg"

- ' g
Uq(6) = Up(d) - (250b) i %
591 §(gg=1) 4
Us(8) = oG [o2-1 + (a?+1)(02-1)2 - g2(g2-1) + (o?-1)2 g%
Sgs 20° 2 10 3
4
- (02-1)(302+2) + (02-1) - g2+2 i
30 20 5 1250¢) j
i
+ ! tan! ({g2-1)1/2n !
2(a2-1) 1772 1

- g8s1 - gda1 (a2 + 1 4 (02-1) 2-(y-1KG2 , nm2
2y 203 2+(y=1)Kg

Ua(8) = a6 [0} = 1 = oB=1 + 5 (02=1)(02 = 3)
Ualo) =1+ 3

[T TR TOPU NIV CIT R I S Vo

Sg3 20 2 a
-3 (7= a In {(a + (')2-1)1/2":
16 (J""1) ’:!
o 3841 = uBay (S2ereig2-1) 2-(y=1) Kg2) (2504)
204 6 2% (y=1) Kq4 !
1
|
Ug(8) =06 o= 4 (a1 (30742) - gB=1 - (a2-1)2 '
8a4 1% 407 4 ﬂ
a1+ 3) 4 200%=1) ((02=1)2 + 2(g2=1) + 1) :
—— -_ —_— - o~ i
Fl 3 7 5 3 :
!
: (R e _ ean~! ((nfanV2yy o B i
1 (21 77 200 Ny
B l?. - ,2_ e - 2 , |§
i_ri (3¢ + 1 1137 =1) :.Li-ll&s ) (7265Na) :
Qg 2HLy=1)v - 1
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Typical results for the surface pressur= coefficient are shown in Figure 20
for Yy = 1.4, As Cpo is equal to the negative of Cp1s only the latter has been
plotted., These results achiaeve a hypersonic limiting value as X§ * = which
agrees well with other known solutions. For example, for n = 1, the resul®
Cp1/6 takes on the value 4,046 which is to be compared with 4.088 qbtained by
Cheng (Reference 24) in a separate analysis. The linearized limit, x§ + 0, of
Equation (250) yields

S?n’i as Kg * 0 , n 21 (251)
n

This result agrees exactly with the linearized theory result of Mascitti
(Reference 15),

Figure 21 shows a c¢omparison of the present theory with the experimental
regults ohtained by Chan (Reference 2R) for flow past a right circular cone of
half angle § = 15 degrees and freestrean Mach number M» = 10.4 and various
angles of attack. Provided the angle of attack is small compared to §, this
flow corresponds to a shock wave whose shape deviates from a circle (in
cross-gectinn) by an amount proporkional tn crs ¢. Figure 21 compares results
from the presgsent theory for the surface pressure coefficient for n = ¢ wizh
experimental rasults for a/8 = 0, 0.2, N.4. The comparison is guite good,
although the error dces grow as a/6 increases, particunlarly near the gymmetry
li.:g ($ = 0,m).

The pregsent regults for n = 2 are identical with those of Section IT.1
and thus the comparison of the thenry with experiment shall not be repeated
hern. whila the nredent analysis would alleow incinsion of the contribution of
the £4 cos(d{$=-44)) term to the solutina, such a procedure would not be wholly
sygtematic as {t would ignore the equally important (asymptotically as Ex*0)
contributinag of the secnnd orier terms proportional to 522. The ¢4
contribation does yive a slight improvemnent {n the comparison between the

77

"™

L

PR

R M i - - <



Emﬂx‘ LB e el i Lot R L b T T

R i A b o e

TP o Ua) 05300 ) DUARGGAL 90V PInG 7 iublyg

01

o
<
.
~
-
[y

b "t " T




aﬂﬁﬁxi R Ly R L e R AL LIRS oreap o w L e e
) 1
]

i

{oucnt r 160y pun Auool jo wontitduo))  HOre iy SO0 oy gt oo e ldey T ol vy

SR (r31 il 0c1 Do J 08 BN] ob 0 3
'

L 1 1 I L L L] 1

i
!
|
A
1
|
f
!
|
bt

(0 u) Adoay aunsot =

VR 3O [y (eovieousy el o o

Ay




i

Gl SLFIRRC

e

e

———ra g

ey

- ——

expariments of Referance 26, and the theory of Sectinn 1I.1, This comparison
doea, however, suggest that the second order terms proportionatl to 922 must be
included i{f a useful improvement is to he obtained.
e, Streamsurfaces and Waverider Seometries
The streamsurfaces of the flowfield are surfaces composed of streamlines
which, in turn, are the field lines of the velocity vector. The streamlines
of a given velocity field can be determined from the solution of
+ >
dr x Vv = N0 (252)
>
where v is a vector giving position along the streamline., 1In spherical polar
coordinates Equation (252) can b2 reduced to

dr = r 839 = r sin 6 4 ¢ (253)
u v W

It is convenlent in the preseat analysis to introduce a new polar coordinate
A, defined as

A= 8- 8.09) (254)
3g(9)=R.(9)

Then A varjes from zero on the hody to unity at the shock. Now

49 = (9g = B A+ ' + A Gi' - Qb‘) d¢é) (2£5)
3 - 94 8¢ = 9

For geometries which deviate slightly from that of a right circular cone,
B = 6 + 0(e,) and 9g = 8 + 0(a,cq). 1Tn thils case, Equation (255) reduces to
349 = (B~8) 4AX + 0(a,e,) (256)

and Equation (253) becomes

dr = r(8-6) 4\ = r sin ((8=6) ) 4¢ (257)
u v W

with errors of order (a,e,). The velocity field is given by Equations
(182 through 184)

u = uy + aJg(0) cos(éd=-¢p) + L €, UL(0B) cos(n(é=¢,))
1

30




v = yp + avy(8) coslp~-¢g5) *

3 4

€, Va(8) cos(n{¢=¢,))

w = awg(8) sin(s=¢gq) + I €4 n W,(6) sin(nl¢=¢,)) (258)

=]

Thus, to lowest order, Bgquations (257) becomes

. ar = (B8-68) upg drx + 0 (a,ey) (259)
r Vo
(B=68) aa = dé + O(a,en) (260)
: - aWp sin(¢=¢g) + Z €, n Wy sin(n(é=-¢,)
vy 8in ((8=8) 1)) n

Equation (259) can he integrated to give

X
r=r; exp ((B=6) | up ) (261)
A Vo
where r; and Aj are constants of integra. and correspond to the streamline
passing through the point (ri,ki,¢1). Infr ‘tion of Equation (260) in closed

form is impossible, in general., However, for geometries that can be “

represented by a singla Fouriaer cowponeat in 3, a rather simple result: can be

obtalined,
X -—
tan(n ($-9,)) = tan(n ($4-%)) exp[ennz(S—G) ) W, 49 ] (262)
2 2 Xi D) sin((B-G)X)

Jsing the hypersonic small Adigturbance theory approximation, the integrals
that appear in Equations (261) and (2A2) can bhe evaluated approximately.

Thera regults

r = (942 - 52‘,1'/2 (263)
ri g - &
n¢_ (Fp=u )h
- 252
tan(_;_ (9=$,)) = tan(g (¢i-¢,_.,>>(g_?_z 232 = 22) (264)

1

Rewritken here are the results in terms of @ rather than A. Also, in carrying

cut the integration in Equation (262), (F, - u,) has heen approximated by its

valiue »n the hody.
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Typical raesults from Equation (264, are shown in Figures 22 through 25
for n = 1,2,3,4, respectively. These rasults give the projaction of the
streamlines on the unit sphere. These projections are referred to as the
"crossflow streamlines." For a glven n, the number of crossflow stagnation
pointsg is 2n. One-half of the stagnation points are of the saddle point
variaty while the other half arae of the improper node type.

Theée crosgflow streamline results can he uéed to develob a geries of new
waverider geometries. That is, since the streamlines of any inviscid flow can
be interpretad as a solid boundary, these streamlines can be used to generate
new lifting body shapes. While the generation of the new lifting body shapes
will be the subject of a subsequent section, Fiqure 26 shows some possible
resultse.

€. Concluding Remarks

The results obtained shouid be particulariy useful hecause of their
gsimplicity and ease of utility. The determination of the pressure acting on
a body has been reduced to rather simple formulas. The dependence of the
pressure force on the body shape, free-stream conditions, and ratio of
gpecific heats is explicitly demonstrated. 1In addition, the associated
streamsurfaces allow new classes of lifting bodies to be developed by means of
the waverider notion. In this way, practical lifting geometries can be
developed which avoid shape corners, winga of zero thickness, and other
unrealistic features.

3. LONGITUDINAL CURVATURE

In this section is developed an approximate analytical solution that
illustrates the general features of a supersonic flow past a pointed body that
differs from a right circular cone as a result of small longitudinal

curvature. then combined with the earlier results fcor the effects of angle of
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attack and deviations of the cross=section from a cicrcle, these results allow
the supersonic flow past rather general hody shapes to be described.

Others have investigated che problem of supersonic flow past a body with
longitudinal curvature. Hayes and Probstain {Reference 29) describe the well
known empirical tangent cone method. The shock expansion method of Epstein

(Referénce 30) has also heen used to analyze such flows. Van Dyke (Réference

31), using the nonlinear hyperéonié small disturbance theory, has analyzed the

flow past ogival-shaped hodies. However, none of these earlier approaches are
completely analytical. They all require numerical integration or the use of
tables. In contrast, the present work yields results which are given
explicitly in closed form. As a cnnsequence, these results are easy to use
and lend themselves more readily to preliminary design applications,
a. Governing Equations and Boundary Zonditions
In spherical coordinates, as shown 1n Tigure 27, the pointeAd
axisymmetrical body at zero angle »f attack that has slight longitudinal
curvature 1s represented by
9 = § ~ ef() (265)
where § is the semivertex angle of the basi: right circular cone and € is a
small parameter. The curvature function f(r) {s an arbitrary function of the
radial distance v and depends upon the given shape of the boly. For € small,
the curvature is given by €(2f' + rf”), The ghape of the associated shock
wave is represented in a similar way
85 = B - £g(r) (266)
where 8 is angle of the shock wave »f the bagic cone and g(r) is a function to
be determined.
Since the longitudinal curvature is proportional o the parameter ¢,

which is assumed small, the various flow field variabhles are expanded in
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powers of ¢,
ui{r,8) = ug(8) + eUl(r,8) + 0(e?)
v(r,8) = vg(0) + ev(r,8) + n(e?)
(267)
plr,8) = po(8) + eP(r,8) + 0(e?)

p(r,8) = py(8) + €R(r,0) + 9(e?)

The variébles ug, Vgr Por And py are the two components of the valqcity, the

pressure, and the density, respectively, of the basic right clrcular cone
flow. They are functions of the polar angle 9 only hecause steady, supersonic
flow past a sufficiently slender right circular cone at zaro angle of attack
is a conical flow. The terms elJ, €V, ¢P, and €R are the first order
correction terms due to small longitudinal ~urvature. They depend on r and 6
but are independent of the meridian angle ¢ because the perturbed flow is
still axisymmetric.,

The velocity, pressure, and density ar. governed by the equations
expressing conservation of mass, Newton's second law, the first law of
thermodynamics, and the various equations of state, Mere, it is agsumed that
the flow is inviascid, adiahatic, and steady and that the gas is calerically
perfect. The equatinns expressing congarvation of mass, Newton's second law,

and the first law of thermodynamics can then be written

+*>
Veipv) = 0 (268)
+ *>
pIV(V2) = v x (V x V)] = =¥p (269)
2
gi + _Y_Pp T constant (270)
2 Y=1yYy
s = alp,n) (271)

Using these governing emuations and the expanailon expressions for the
perturbed flow field variables, derive the equatinns governing the zeroth

order and the first order flows for gteady, homenerglc flow of a parfaect gas.
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The expansion of the energy equatinn, Equation (270), by means of

Equation (267) leads to

unz + vaz + _Y_ Pp ™ constant (272a)
2 Y~1 pg
and
. pa(Y=1)(ugl + vgV) + YP = Rajy2 (272b)

E -

E

3

?.,

.f:: P £
“é .

é :

3

i

Haere ag(8) = (Ypo/po)'/z is the speed of gound in the basic unperturbed flow.
It i3 apparent that the zeroth-order 2quationn is exactly the same as that of

the unparturbed flow. The first-order equation can he interpreted as Hﬁ'.

R T

equation giving the density perturhation in tarms of pressure and veloci-y

perturbations.

The momentum equationn, ®Tauation (269), can be expanded to give
+ + » »
pO[V(vQ'vQ) = vg x curl vy) = -Vpo (273a)
2
and

L d +* +» + » >
Po(Vivgev) = vq x curl v = Vv x curl vyl

» L 4 > >
¥ + R[V(vp*vg? = vp x curl vp) = VP (273b)
' 2
£ -+ +» L4

The velocity vector V ig expanded as vy + £V, From the zeroth-order momentum

it -2

equation, it is known that the unparturbed flow ig irrotacional; that is,

>
curl vy = 0,

The first order aquation tham baecomes,
+ + + + »
Pp(V(vyeVv) = vp x curl V] + RY(vg*vy) = -0p {274)
2

Rawriting thiy result in sgpherical pnlar coordinates, obtains

Pn 3 (ugl + vpV) = pavg{y + 3V = 1 3U) = - 3P (275a)
or r ar r 00 ar
Pa 1 2 (ugl + vpV) *+ pyug(¥ + 3V = 1 3U) + R 14 (up? + vy2) = - 1 3p
r 30 r ¢ r 30 r 49 2 r 360

(275h;

¢
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UUsing the gzeroth order aquation, (275) can be rewritten as,

Pg 13 (ugU + voV) + poug{V + 3V - 1 3U) - R a2 1_dpg = - 1 30 (276)
r 38 r ar r 38 r pqo 48 r 48

The energy equation (272b) and the two momentum equations (275a) and
(276) are three relations betwean the first-order perturbation variables, 1],

Vv, P, and R. Eliminating R in (276) by means of (272b) yields

Po 1 & (ugl +vgV) + poug(V + 3U - 1 3U)
r 30 r dr r 39

- 1 dpg (Y=1)(ugU + voV) =Y dppg P = -1 3P (277)
r 48 pp 18 r r 99

Substituting for the term

(V ¢ 23 J

-1

[=]

)

nil<

1
r

- ¥
[ad
@
L. -]

in (277) from (275a), provides a first order partial differential equation
for the cquantity L = ppupglU + pgvgV + Py

an + 9

=
"Is
3l

+ Yy vg? (up + dvglr = 0 (278)
r a0

ar
2}

This partial Aifferential equation for L(r,Jd) can he solved hy the method of

characteristics using

g = d6 - darL
r vo/ug Y ¥p° (1 + ug 4vp)
27 3

and appropriate boundary conditions for L{(r,0).

Here it can be s. n that when vg2/ag? << 1, L(r,8) is constant along the
streamlines of the unperturbed flow. This can be written in vector notation
as

»
vg * Tu =0 when v02/a02 << 1
The basic: right circular cone flow is ~onical; that is, the flowfield

quantities depend only on the angia 6. As a cnnsequenca, the perturbation

equatinng for the first-order quantities are equidimensional in r and possess
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solutions that are proportional to any power of r, say r™ for any number m.
Since the perturbation equations and boundary conditions are linear, it is
possible to express the first-order quantities in the formn of a gseries in r;

€EU(r,0) s I enr™Un(6)

EV(r,0) = I enr™v,(6)
(279)
€EP(r,0) = T enr™Pn(6)
ER(x,0) = T gnpr™R,(6)
where here the sums are takan over all possible values of m.
The partial differential squation for I(r,6) then becomes an ordinary

differential equation for L,(6).

{m\.lo + Y VD (ug + Q)} Ly + vog dLyy = 0O (280)
ap 460
where
Lm(a) = poﬂo"m + 00VOVm + Pm (281)

This aquation can be integrated to glive

8
Ln(?) = L (B) exp [J muy + y(vg2/ag?)(uy + vg') 48] (282)
6 vo

where the constant Lg(8) is to be obtained later from the boundary conditions.
Now that Un,(8) is a known function, the flow variables can be expressed
in tarms of Lm(e). From Equation (281)
Pn = Ly = PrugUpy = PovoVn (283,
The radial momentum equation, (275a,, gives
mpg{ugUpm + voVyp) = povpl(mt ) Vy = Uy']l = -mP,

wlaminating P, by means of (283,, results in

Vp(8) = m 1 L+ 1 dUy (284)
m+ 1 QOVO +1 48
93
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Use the energy equation to determinae the density function Ry,

Rp(8) = = _3_ [pouglm * £oVq QUm = (Y = _M_ Ly) (28%)
ap? w1 A8 me1

Equations (283) through (285) give tha pressure Py, tangential velocity
Vme and density Ry in terms of the radial velocity Up and the known variable
Lms To obtain Up, use the continuity equation.

The continuity equation (268) is expanded to first order by using

expreasions (267) and (279) to qive, in snherical coordinates,

2up + vg cot 8 + dvp + vy dpop = 0 {285a)
40 Po aoe
and
(m+2) (pgUm + ugRy) + (pgVy + VoRp) cot O (285b)

+d (PVm + VoRp) = 0
a6

Eliminating V, and R, by means of (284) and (285), results in a single linear,

second-order ordinary diffarential equation for Ugi(d),

2

Un"(1 - ¥02)

a0

+ Up'{cot 8 - vy fvg cot 8 + (2m+3) up]
ap ap ag

+ (1 = vg2) 4 2n pa + 2V 2 (4 4n ay - & in vy))
27 as ZE'Z 46 T

+ Up(m+1) {(m+2) (1 - gn;) - yvg {cot 8 +
a an”

2

vo' (1 = (2=y) ugvpl = vpé (1 = (2-Y) Q 2)) (286)
Vo 89 ;gz

= (mb1) Ly {m 1 (muy + vy' - vy cot 6)

PpVy 1 )
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+ym Vplug + vp') +vg?2 iy - _m) {d_2n (vpi/an?)
m+1 ag ag o+ 1 a6
+ xvg (ug + vo';}]
ap“

where L, is given by (282),. To obtain (2R6), the known results of the

- cot B - ug (m+2, +
vo VO

F
+
dc
(=28 [

zeroth-order equations, (272a), (273a), and (285a), are used.

Equatlion (286) is a linear, nonhomogeneous, second-order ordinary
differential equaﬁibn wiﬁﬁ ;érighie c;effic;ents. ‘While numerical solutions
can be readily obtained, explicit analytical solutions do not appear possible.
Consequently, an approximate analytical solution is sought.

b. Weak Polar Crossflow Approximation, Hypersonic Small Disturbance

Limit

Now adopt the weak polar crossflow approximatinn for slender bodies. The
term (vo/ao)2 varies from the maximum value at the gshock to zero on the body.
For Mo 3:in 3 large, the upper hound to (v07/302) hecomes (yY=1,2y (= 1/7 f Yy =
1.4;. 1A shall he seen, ignoring terms of order (vp/an) in the govarning
equatinn for U,(9) reduces the eqiatinn to a form that can be solved
analytically in terms of known functions. As shown in paragraph 2 for
saparsonic fiow past a cnne of small srosg-secticnal elliptiecity, the
approximate result sbhta_ted by ignering racmsg of order vp/ap gives a result
which i3 accurate over the entire range of values of the hypersonic small
dissirhance parameter Mx!, especially for values of Med greater than unity.

The speed of sound ay and the density 5y of the basic cone fiow vary
gamonthly and gsiightly acrnss £he ghock layer. Hence, with listle loss of
accucacy, they can bhe raplaced by ap‘it; anl on{3). 1€ the terms or order
(vy/dy) and Ene terms proportional %9 duy’d? and dap/49 cerms in Fquation
(246, are ianorad Equatinn (296) raduces £

R T N L B N L (287,
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where

Bm” = {m1) {(m+2) = @ ug?}
ap

Hl’?\ = 1 m [(?\'H’Q)‘]n + 2 dVQ}
V0~ ®

Y

I

B -
f mup - d9
9 VO R R _

Ly = Lp(B) exp

In the hypersonic small Aisturbance theory limit, Mo + @ and 8ia § + 0

’
1

such that combination Kg§ < Xe sin § remaiis fiaite, the hasic circular cone

flow can be accurately approximated by Equations (76). Now agsume the slender

]
body approximation such that sin § * 0 and neglect second order terms ia ]
Tquations (76). The zeroth=-orler 30lation then ra:ducas to Equations (77).

In this hynersonic agmall Aistarhance limik, (287) becomes
a2 - n2 . :
82 g{uzm + 9 duy + 92 o Ug = 02 HL(0) (238)
49 Aas !
where
Cm? = (M1 ime2) = m(mel) Vo2
-
an-
Ho(2) = Lp(3) im?32 < 2m82; :
ove (32 ST 3
m/2 i
Ln(9) = La(8) (82 - §2) :
AN
37 =752 :
When m = 0, Cq2 = 2 and Hqid) = 2 then %
92 a2y, + 9 dup + 292y = 0 {289) i
30 A9

Thig {3 the same equatinn as =hat for sapsrsonis ~onical flow pagt a right
circulac aone when the sliz2aier hody assatptionn is maie. The solution in this
case is
va = Dq f Dy A0 2
For the case m # 2, ¢he gasoad rary of C“Z is miah greater than the first
term because {1 the yper3sni=s g1a’? - svar-hance 1init, szfanz is large when

5
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M, is large. It is then possible to write that

Cm2 82 = —m(m+1) Va? 02 = -m(m+1) an? K2 (290)
ag ag '

where Kez - H.2 82. 1In this cagse, the homogeneous solution of (288) is

U (8) = A3 Ip(CpB) + Ay Kq(CpB) (291,
thlllO

Here I and Ky are modified Bessel functions of the first and second kind of
zeroth order. Using the method of variation of parameters, the nonhomogeneous
solution of (288) is obtained in the form
Un(8) = Ay I5(Cprb) + A4 Kg(Cp6)
8
= In(Cp0) é 8 Kp(CpB) Hy(8) 48

8
+ Kg(CpB) | 8 I5(Cp8) Hy(8) a8 (292)
8

The indicated integrations in this result can be carried out by using

Ln(8) = - vo_ dlp(8) . vo = dug
mug dé do

to obtain, after mich algebra,

8
] 8 Ko(Cp®)Hp(8)d8 = [_ 82 Ko(Cp®)Lp(8)(1 = (m+1) vo2)
8 82-52 (m+2) a,
8
+ Cpb Ky (Cpf) Ly(0))
m 8
R B
X [ 8% Xp (CrfiLy(8) + Cpb XKq(Cpb)Ly(6)) (293,
082-82 m 9

01g(Cp8) Hp(9)d0

D~

= [ 682 I0(CpB) Lp(8)(1 - (me) vp?;
5262 (m+2) ‘ﬂ?

-

B
- Cp9 Ty (CpB) Lp(0))
m 0
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8
a [ 082  Ip(CyB) Lg(8) = CpB I4(Cpu0) Ly(8)) (294)
92-352 m ]

The constants A3, A4 and Lp(B) in the solution for Up(8) will he

determined later from the associated boundary conditions. The other flowfield

variables Py, Vn, and Ry, can then be obtained by using Equations (283) through
(285).

Ce Boundary Conditions and Flow Variables o ’ o o

The boundary conditions for this problem are the shock jump relations and

the condition of zero mass flux through the body =-- the so-called tangency

—— e — b, . st |

condition. The shock jump conditions can be written

-

— + ~
PaVew * ng = pgVg * ng = n (295) i
+ + + -
MVe * ng + pm = MVg * ng # 9 (296) -é
IS ~ + *> :‘
Ve X Ng = Yg X ng (297) i
Here, again, the subscripts =» and s refer to conditions upstream and ?
- A
downstream of the shock wave and ng 1s the unit normal to the shock (Figure -%
28). The free stream conditions are taken to be constant with %
+ * s i:
Ve = Vuicos 6 e, - sin 0 eq] (298) i
]
1

Since it is assumed that the first order gquantities have the forms given hy

o —_ra

(279), the variables downstream of the shock are written as

~

>
Vg = lug + L €qr™ g + 0(e2)le,

ol sl e o

M o b

i
a

+ [vg L eqr™ vy + 0(e2)]eg

(299)

Pg = po * L Eqr™ Pp + 0(e2)

[

Pg = Pp + L Epr™ Ry + 0(e2)
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The above representation for the perturbed flow variables suggests that the
body and shock shape given in (265) and (266) should be rewritten as

8. = 8 - T egpr™

6g = B = L gp Gpr™ (300)
In cylindrical polar coordinates, the expression for the hody ehape is
Rc = z tan Oy _ o (301
where Re ié radius of the cr§s§-séc§ion of the cone. Using the relation
r = z sec § + 0(¢)
supplies
B, = 8 - L eplz sec )™ + 0(e2)
Bquation (301) can also be rewritten as
Re = z tan 6 = L gqlsec 6)™2 M1 4 g(e2) (302)
Thus, R. = z tan § represents the basic circular cone and
' L eplsec §)™2 2™ = 3 ;m 2+
represents the perturbation terms arising from the small longitudinal
curvature. The expression for the bhody shape, (300), can thus be re-expressed
in cylindrical polar coordinates or vice versa. Also for slender bodies, the

expression can be written

Em = €4 (3¢3)
These results will bhe useful later when these calculations are compared with
experiment.

Using the expregsions for the flow quantities upstream of the shock,

(298), and downstream of the shock, (299), and the expression for shock angle,

{300) with the approximation

n
-

cos (T gqr Gp)

"

sin (T epr™ o) I €ur™ Gp
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I+ is found rhat 1205) give: o lowest Hrie-

8 = B: pPpva ¢ =PeVe Sin 3

and to first order

8 = R: VogRm * PqVnm © PwVae cOS 200 = pg me1iGy + 4 (pgvglGy

P 4%

(304)

Here, a Taylor series expansion was used to transfer the boundary conditions

~ to the unperturbed shock location.

Again the hypersonic small disturbance approximation expressed in (77)

was adopted and pp * constant was assuned. In addition to {(77) is the

relation

Then, (304) can be written in simpler form as

6§ = 3: V:)Rm + D{)Vm = -DOVQ(R\*'"

Using the same procedure, the normal momentum jump cond.c.on, (296),

becomes to lowest order,

3 22

2 .
B: pxVe~ sin®2 +

]

P» = P9Vl + pn

and <o first order,

B = 8: Py + pavqV, = =ppVe> 8(1 = §2)(m+1) 62 G 1306)
m VIV OVe EY E’ m

The tangential velocitcy condition a% the shock, (297), becomes to zerath

or ler,

and to first order

I = 3 Uy = VaA(me) g; G

(307)
3

~re necessary “ounidary conditinne at the shock have now been sgspecified.

Tor later usge also ankte that

Q = 3. L.“ = ,),'\'JQ'J.“_ + D:\_\,'rj_\’-_n + D

P (308)
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= ppVe? 3 %; (m+1) G
after Equations (306) and (307).
The tangency condition can be written
; * g =0 on the body (309)

~

Here n, is the unit normal vector on the body surface, 6o = 6 « I Eqre  Using

{299) and the hypersonic small Jdisturbance lihit, the tangency conditioen can’
be written as
Vpl(d) = =Ve(m+2) (310)

The boundary conditions needed tn Aetermine the corstants Dy, Dy, D3, Dy

and In(8) of the solution for i,(9) are now specified, Using the two houndary

conditions (307) and (310) the relation between V. and Uy, (284), and Ix(8B),
(308), tre constant; can be detarmined as

D1 = va £§ Gn - 2\5'v’m 27‘ 8
2

Dy ¢ -25 Vo

Dy = __1 (XS (Z3)UmiB) + (mr1IF(8) Kp(ChB)

0R1SP Cm
- fme1){m2) Ve Kp(CpB)} (311)
Cm .
D4 = 1 {14(c8Hu,(8) =~ (me1)F(6) I(CpB)
ng18= Cm

+ (mr1){m2) Yo Ig(CmB)}
Cm
where

F(9) = 59 CpB 5p Vw {_m82 1908P + Cp8 1818M}
33 3132

and where has been introduced the notatinn
- -~ - ~ 7\ . ~ g ~ 2
nan8?F = I,/ Zpt)Ka (T3} + (SN GRS SRR (312)

man8v = I {Cma)K (7m?3) = Ll T2V I (T30

122
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Thus
0B16P = IQ(CpBlKy(Crd) + Kg(CpB)T1(Cpb)
160BP = I4(CpB)KO0(CpB) + Kq4(CpB)I5(CyB)
1818BM = I4(CpB)Kq(CpB) - Kq(CpB)Iq(CpB)
The results for U, then become
ma 0; Ug(8) = (B 82 Gy ~ 25 &n 8) Ve ' (313a)
87 B

m # 0; Um(e) = Em(e) + (m+1) (m+2) L 0B0OM BV
pqu, cmB 08158p

+ 82 Gu(m1) {0816P + CpB 62 (1818M
82 0B16P 82 os1sp

+ 0B0OM - 0018P)} BVe (313b)

When Cn@ + 0, the asymptotic expansions of the modified Ressel functions can

be used; they are N
Ko(Cp9) = =2n Cpb , Kq(Cp8) = _1_
2 Cm3
Ip(Cpb) = 1 ¢ Iq(Cud) =0
Then
1816M = 0
0808M = -2n(9/8)
0815p = 1/Cp8 (314)
0B18p = 1/CpS
0818P = 1/CpR

and the solution for Ugy(8) becomes

Un(6) = Lp(8) = (mk1)(m+2) £n B Veé

OOVN 8
+ 82 Gu(m1)(1 = 62) BVa (315)
37 82

when Cn9 +# 0., It ig interesting that (315) for the case m = 0 is identical

with Up(9) given by (313a),

e
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v Vm(0) can now be determined by using Equation (284). The results are

m= 0; Vg(B) = =2 Vg § (318a)
0 ' ;
. m® 0y Vn(8) = 62 Gp Ve Cp8 {1815M + 62 o8 (316Db)
82 08166 B2 :

(1810M = 1816M 0B818P)} = (m+2)Ve 0HB16P
0B815P 0B14p

P I3
ot g .

4 .
PR PRSP

Sopms e

When Cn0 + 0, the asymptotic forms for the modified Bessel functions give ;
1915M = 0

1818 = 0

———— o —

0B18P.3 1/Cp@
and V,(0) then becomes

Vn(8) & =(m+2) Vo § , CpB + 0
<)

This result for m = 0 is identical to Vy(8) given by (316a).
The remaining constant G,, the ratin of the perturbations of the shock

and the body angle, is calculated by using the houndary conditions, (305) and

{285)., The result is

- {1 - Bz Vnz 02) Vi \
Gy = an (317a) -
| (m+2) 82 + (m+ 1187 va? (1- §7) 87 (1-y 62) + Vpy (1= B2 VaZ D?) \
| e 202 87 82 82 ay?
\
|
where Vpny and V5 are Aefined from the boundary condition at 8 = B as Y

Vmi * Vm2Gm = Yp(8) y
Voo

and 0 = (1 - 62/82), After calculating V,(B) from (316), the result is

Vo = =2 62 (317b) |
8 |

Vo2 = 0

Vmy = - _ (m+2) Vg (317¢)

Cm! 2) (0B16P)
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Vm2 = CmB 82 (1 - §2) 1818M
8?2 82 0g1sp

Since Vo2B2/an2 can be expressed in terms of Y and K5 as

V232 = [(y+1)xz2 + 2)2
aog 2[(y=1)Kg% + 21 [YKge + 1)

It ia seen that Gy is a function of A/6, X§, Y and m. When m = 0, the

‘equation for Gy can be rewritten after some manipulation as

Go = B [__2(y + 1)Kg2 ]
8§ (3Y + 1)Kg + 6

These rasults for G, are plotted in Figures 29 and 30 as functions of Kg, Y
and m. Gp has the correct limiting vaiue of linearized theory (e.g. Gy = 0)
when Kg + 0. Also, as Kg + ®, a hypersonic limiting value is achieved. 1In
the Newtonian limit (Kg + @ and y = 1), the result is G,=1, as expected.

It is important to understand that these limits are ohtained correctly in
the present thaeory because the weak polar-cross flow approximation is applied
only tn the governing equatinn for Uy, and not to the boundary conditions. The
boundary conditions are satisfied exactly, within the framework of the small
perturbation approximation, As a consaquence, the solution achieves both the
hypersonic (Xg *+ =) and linear (Kg *» 0) limits correctly and, in general,
gives a good approximation over the entire range of the similarity parameter
LY.

A comparison is given in Figure (31) bastwean the present result for G,
and the initial ratio of shock to body curvature, £, calculated numerically by
Van Dyke (Refarence 31) for an ogiva/ﬁody using the nonlinear hypersonic small

7

Aisturbance theory. The quantity £ is Jdefinad such that the body and shock
4
ars glilven by p
4
Ry = B(bz + 1 cz2)
4 2

Rg = Blz + 1 ck z?)
2
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It can be gshown that £ is identical to <y of the present theory by using (302)

and (303), Figure (31) shows that the comparison between the present results

and those of Van Dyke 1is very good, especially Qhen Kg is greater than unity.
The pressure and density can now bhe determined by using

Pr(8) & Lp(8) = pgVeln(9) + poVe 6(1 - gé) Ve(9)
o

“-h@(e)'- (Y-1)-Lﬁ(6)+ §§{9> _ o

which follow from the Adefinition of L,(8) and the energy equation., Ug(0) and
Vp(8) are given by (313) ands (316), The flow variables Uy, Vg, Pp and R, are
shown as function of 0' = (0=§)/(B=8) for various values of m and K5 in
Figurr (22) through (35) for Y = 1.4.

d. Surface Perturbation Pressure Coefficient

The pressure on the surface of the cone is qivén by

pir,9,) = pplfp) + L eur'™ PL(8) + 0(e2) (318)
whera
By = 6 = L gqr™

Transfarring the expression (318) to the hasic cone glives

plr,8y) = pa(6) + L ear™ (6) - (dpy) + 0(e?) (319)
a6 ¢

Since vy vanisheg at the cone suarface, the gradient of the zeroti-order

pressure (dpp/d9) vanishes there alan; that is,

(dpp) = =pg(é)vp(8)(ug + dvg) = 0 (320)
49 ¢ dg §
Hence
plr,dn) = pg(5) + L e r™p (8) + 0(e?) (321)
The prugsurae coefficient Cp is Adefined hy
p. -1
Ch = D
P 2———?
L Me
2
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Thus the surface pressure coefficient, Cpc, can be written as
Cpe * €pal3) + L enrp Coml6) + 0(e?) (322)
where

Cpo(§) = (polf) = 1/(Y Mw?)

Pw 2

Com(8) = Pp(8)/Y Mx?
2

= ~pgValn (8) /(Y Mu?)
2

The velocity perturbation Up(S8) can be calculated from (313), and pp($)
is known from the unperturbed flow results. Using the relation

sz = vwz = szpn/Ypm

the expression for the perturbation pressure coefficient Cpm as can be written

as

(4 &n(8/8) - 2 §
(1 - £2) 8
ryd
)

m= 0; Cpm 30]6

m#0; Cppy=-__ 26 ((m+1) (m+2; 1 OBOSM
(1 - 82) " Cpb 0816P
B2

+ & Gpim+1) (0818P + c,B 82 (1816M 0806M - 0818P) }]
8 0B16P 82 018

These results can be shown to agree exactly with linearized theory in the
limic Xg * 0 and with the modified Newtonian theory (e.g. Newtonian plus
Bussmann correction) in the double limit Xg *+ @, y + 1, Figure 36 shows a
comparison of the results of the present theory with those of other methods
for the initial pressure gradient or. the ocgive body represented by

RC=R0‘Z+ RG" 22+1R0". 23+000

1
2
The value of -Cp1/25, which gives the initial pressure gradient at the tip of

the ogive, is plotted versus to X for Yy = 1,405, The present results agree
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well with the numerical calculation of Van Dyke (Reference 31) based on the
nonlinear hypersonic small disturbance theory when Xg > 1. Also, the results
in Figure 37 show that the present theory goes to the limit of modified
Newtonian theory when K§ + ® and vy + 1, |

Figure 38 shows a comparison of the surface pressure coefficient
calculated by means of the present theory with experimental data (Reference

-

32) for an ogival ghape given by
dr = §(1-2)
dx

This expresgion can be used along with (302) to obtain

8c = 8(1 - 1)

P
2

Figure 38 shows that the present theory works well provided the correction

(here 8r/2) is small compared to basic cone angle (here §); that is, if
r/2<<1; The results show that this condition is satisfied if r<d.2.

An improved comparison of theory and experiment can be obtained using an
empirical "secant cone" method. This result is obtained by taking the
pertuarbation solution

Che = 82cp0(Xg,Y) + 8 £ Chq(Kg,Y)
2
and replacing 5§ with the local secant angle given by,

8= 6(1 - 1)

r
2

at every station x along the axis of the oglve,

The comparison between theory and experiment is shown in Figure 39 and
is now remarkablv gcod. The well known *tangent-cone result is also included
in Figure 39 for comparison, 1In tiw enpirical tangent cone method, the

pregsure coefficient is assumed to bhe given by
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Cpc = g2 CpolKg,Y)-
where the local inclination 8 is given by
8 = 8(1-r)

While the comparison between theory and experiment is better than that for the
regular perturbation scheme, it is not as good as that for the secant cone
method.

e. Concluding Remarks’

Approximate flowfield results for the supersonic flow past an
axisymmetric body which has slightly longitudinal curvature have been obtained
explicitly in closed form. The results appear to be accurate when the
perturbation of the body angle is less than ten percent of the body angle of
the basic right circular cone. The range of accuracy for the pressure
coefficient can be enlarged by using the empirical secant cone method, The
present results are useful over the entire range of Xg from the linearized
theory limit {K§ + 0) to the hypersonic limit (X5 + ®), The results are
especially accurate for Kg§ > 1. Further comparisons of the results of the
present theory with experimental data would be desirable as the basis for more
carefully delineating the accuracy of the present calculations.

4. UNSTEADY MOTIONS

In the design and analysis of missiles and aircraft undergoing dynamical
motions in supersonic and hypersoric flight, the time-varying behavior of the
flowfield, shock-wave shape, and forces and moments are of paramount
interest. The methods for dealing with these factors on an approximate and
relatively simple, but accurate, hasis, however, seem to be in a primitive
gstate., It is safe to say ‘“at approximate methods of analysis for unsteady
supersgsonic flows are now 1ir as brnad or as useful as the myriad of
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analytical methods availahle for related steady flows. The general usage of
digital computers has obviated this need somewhat, but the insight and

practical utility of approximate analytical results are still needed,

For hypersonic flow the simplest method for calculating the forces and
momaents on a bedy is that of Newtonian theory. Stabhility derivatives for

combinations of cones, cone frustums, and ‘iemispheres are given by Fisher

(Reference 33). Newtonian theory, howéver, is valid strictly when streamline

curvature is negligible and in the double limit My, * ® and Y + 1., Because of

Nl B -

these ghortcomings, various modifications, such as that of Ericsson (Reference
34), have been devised. Such methods, by their nature, are subject to
significant error, as pointed out by Mahoud and Hui (Reference 35). Other
methods have also been devised, such as those of Khalid and East (References
36,37) which make use of shock-expansion concepts to generate closed-form
formilas for stability derivatives for certain miggile shapes. These results,
however, are not valid in the limit My * ®. The aforementioned methods
calcuiate results for body forces and moments and are not useful for
predicting flowfields and shock shapes. They are used because they are simple
and because there is a lack of anything better that does not iﬁvolve lengthy
computar calculations. Thus there appears to be a need for rational
appreximate analyses, even for simple shapes, that consider the entire
flowfield in addition to the forces and moments.

fingteady supersonic two-dimensional flows appear to bhe more amenahle to
analysis than flows past axisymmetric hodies., For oscillating wedges and
airfoils, the works of M"cIntosh (Reference 38), Barron (Reference 32), Barron
and vandl (Reference 40), and Fleeter and Riffel (Reference 41), as well as
others, are noteworthy. On the other hand, the analogous unsteady-flow

problem for ogscillating cones seems to be much more difficult., The use of
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potential theory by Tobak and Wwehrend (Reference 42) and such methods as
piston theory by Zartarian, Hsu, and Ashlev (Reference 43) have not led to
accurate results when the Mach numbec¢ is high enough that nonlinear effects
are important, which is generally the case. As mentioned previously, the
shock-expansion results of Khalid and Fas (Reference 37) for dynamic

stability derivatives of gharp cones are invalid when Me*®, Likewise, pure

‘numerical methods, such as the method of characteristics by Kawamura and -

Tsien (Reference 44) are cumbhersome and are not useful for narametric
studies.

Another method of attack for the nroblem of an oscillating cone has been
by means of perturbation of the steadv axisymmetric flow past a circular rone.
By such means Rrona (Reference 45,46) and Hsu (Reference 47) dealt with the
full perturhation problem, and McIntosh (Reference 48) utilized the methods of
h&personic small-disturbance theory. Although these methods lead to sets of
ordinary differential eaquations to solve, their solutions were obtained hy
numerical methods on diaital computers, As a result, a good deal of usgseful
information was obtained, and yet the cohesiveness and utility of analytic
representations were still missing, 1In part, Orlik-Ruckemann (Reference 49)
overcamne some of these deficiencies by devising empirical formulas to
repregent the results of McIntosh., The results were then more readily
applicahle to other problems, such as in the analvsis by Orlik-Ruckemann
(Reference 50) of an oscillatina cone in viscous hynersonic flow.

The motivation for the present work is to obtain approximate analytic
results, on some gort of rational hasis, that describe the ghock shape,
flowfield structure, and forces and moments on a harmonically pitching and
plunging cone. Such results are thus more useful for various purposes, such

as parametric studies and possibly also for invegtigations of unsteady motions
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of other bodies, for instance cone-derived waveriders (Reference S1), It has
been found that steady flows past conical hodies generated by perturbation of
the basic axisymmetric flow past a circular cone can he handled accurately hy
approximate analytic methodes when the basic cone flow is descrihed by the
approximate formulas of Raamussen (Reference 21). 1In this way accurate
approximate analytic results were obtained for steady flows pa.£ inclined
conas (Reference 23), elliptic cones (Referance 52), and arhbitrary cones
(Reference 53), 1In this study, it is planned to apply this method of analysis
to obtain approximate analytic resultg for the harmonically pitching and
plunging cone.

a. Coordinate Systems

To describe the unsteady motionon of a hody, two coordinate gvstems, a
body-fixed coordinate system (x,y,z) and an inartial coordinate system (X,Y,?)
are utilized. The unsteady motion is regarded as a small parturhatinn ahout a
basic steady motion in which the body (a circular gpne) is aligned with a
uniform free stream flowing past it, The basic f;;altream velocity Ve s

aligned with the 7 axis of the inertial conordinate system, that ias,

»> -

Vo *= Veos .
In the steady, hasic, unperturbed motinn, the hody=-fixed coordinate systam {s
coincident with the inertial coordinaie systam., Now the body ig allowed to
rndergo a small unateady motion such that the unsteady disturhances in the
flow produced by this motion are regarded as small, The unsteady motion of
the hody is comprised of twn parts: a rotational motion abhnut a point zy on
the z axis of the bodv in the X~7 plane nf the inertial systam, represented hy
the angle Y(t) which ias ragarded as small, and a rectilinear motion of the

hodv-fixed point zg in the X dirmction of X-Z inertial plane, represantsd hy

the Aiaplacement




S

"

+
h = hit)ay
which 1g aleo regardad as appropriately small, e confiquration of the body
and the coordinate systems are shown in Figure 40, Spharical coordinates are
shown in Figqure 41, The rotational motion is raferred to as a pitching motion
and the rectilinear motion is referred to as a plunging motion, The motions
are indic‘tod in Pigqures 42 and 43,
The angle Y(t) is tﬁe:anqle m;asured froﬁ.tho 1nortiai z-ixiu to tho.

body-fixed z axis. The angular velocity vector for the rotational rate i

thus

> a

we =h(t) oy, (328)
and the angular velocity about the inertial Y-azis (s
Q= @(t) .

The relative winA seen by an observer fixed at zn5 on the hody is

> - -~

Uy = Vety = h(*®) ey, (326)
Thus the angle of attack measured from tha relative wind to the hody 2z axis

is

ale) = y(t) - hie) (327)
Va

where ﬁ/v. is assumaA small, It thus follows that

_hoe Glr) - alt) ,
Va

» <(q+ a) . (32R)

The relation hetwean the pnsition vector r measured from the origin of
the {nertlal nyatam to A fiald point and tha posftion vectnr ry, measured from
the oriain of the hody=fixed aystem to the same fisld point ia

» L] A " +

r = zn €y 4+ h Ay = 29 @, 4+ 1y {329
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PFrom geometrical congiderations, it is easily seen that the orthonormal

Cartesian basis vaectors in the body-fixed system are related to their

counterparts in‘thc inertial coordinate system by !

~ ~ -

ay = cos ¢ ey + sin ¥ ey R
ey = oy . ' (330,

" ~ a

e, = =8in y ay + cos Y ez .

Equatlons (330) together with Equatlon (329)' are enough to establish relations
batween the pailrs of Cartesian coordinates (x,y,2) and (X?Y,Z). It is more
useful, however, to develop relations between spherical coordinates in the two
systems. Towards this end, therefore, write

¥ = r gin 8 cos ¢ . x = ry 8in Oy co8 ¢y

¥Y=rainfsin¢ , y=ry 8ln Oy ain ¢, , {331

Z =r ¢o3 8 ’ z = ry cos OBy l .
The gpherical coordinates (r,8,¢) thus describe a fimld point in the inertial
coordinate system, and the sphoricai coordinates (ry, 0y, 9)) describe the same
fialA polnt as rackoned in the body-fixaed system. The geometrical description
of the gpherical cecordinates is shown in Figure 41. When 3, §, and h are all
ragarded as amall, the following relatinns can be obtaineda between the two

systams of coordlnates to lowest order:

rp * r{1 = yzg + h 0 cos ¢] , {(332a)
r
B = B + [y - gz + h) cos ¢ , (332b)
T
¢p = b = (¥ - y2q + hl 8in & . (332¢)
r 8

The perturbation Lerms In Fquatlen (332a) for ry are actually negligible since

thay invnolve products »f y, h, and 8. When 2z and h are nonzero, these

o e g o s




relations are singular at the oricins : = 0 and r, ; 0.

1t is also useful to have relatinns for the velocity components between
the two coordinate svstems. Let {(u,v,w) denote the spherical velocity
comonents in the inertial (r,08,4) directiong, and let {uy,vp,wp) denote the
body-fixed components in the (ry,8y,,¢)) directions. Then for small 8, ¢, and

h, it can be estahlished that, to lowest order,

up = u = Y2y + R fv cos ¢ - w sin 4] , I (333a)
r .

Vp = v + Yzp + h v cos ¢~ (y - Yzp + W) wsin ¢, (333b)
e r 8

wp *w - Yzo + husin ¢+ (y - jzg + h) v sin & . (333¢)
r T oox 8

Thus when the velocity components are known in the inertial system, they can

“e obtained immediately in the body-fixed sy=atem,

The problem as it has thus beern formulated corresponds to the motion
obgerved in a wind tunnel of a model immersed in a uniform stream undergoing
combined pitching and plunginag motions in a plane.

b. Surface koundary Conditions

A conical body is described in the bhodv-fixed coordinates hy an eguation

of the form

B, = 0o(8) (334)

Equation (332b) can be :1sed to describe the same body in the inertial

coordinate system:

8 = 8.(9) = [y(t) = §(tlzyg + h(t)] cos &

r

or

F(r,9,9,%) = 9 = A,(2) + [Y(t) - ¢{t)zy + h(t)) cos %
r

n . (335%)

For this problem, the body 18 gimpliv a right circular cone of semivertex angle
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§. Thus 8, = §, and the surface functinn F is

Flr,0,¢,t) = 8 = 6 + (P(t) - Y{t)2y + R{t)] cos & = 0 | (336)
r *

The surface tangency condition for unsteady inviscid flow is

- »* 4 >

"_a:£+v-VP=o onF =0 ., (337)
at

For the spherical velecity components {(u,v,w}, this surface boundary conditinn

becomes
e [@ - izu + ﬂ] cos ¢ + u yzg + h cos ¢ + v
r r r
-wly - Vzn + h] sin ¢ = 0 on F = 0, (328)
r 8

Wien the small parameters Y and h are set egual to zero, the basic flow is
recovered, which is steady axisymmetric flow past the cnne of semivertex angle
§. The basic axisymmetric flow is denoted hy up = uva(d), v = vg(8), and

w = wp(8) = 0. The perturbed velocity components are denoted by

u'(r,0,0,t), v'(r,%,4,t), and w'(r,3,¢.t), which are of the order of smallness

of ¥y and h, that ig,

=
1

= up(3) + u'(r,9,¢6,t) ,

<
[

val8) + v'(r,%,0,2) , (339)
w = 0 + Ww'{r,d,5,t) .

+ is further necesgary in the perturbation process to trangfer the boundary

corndition to the bhasic-cone surface by means of a Tavlor series expansion:

v (9) = va(i)y = (Avp) (¥ - jzn + hl cos ¢

a3 g r
+ higher~order terms, o1 T = 19, (340)

The surface boundary conditinig for the basic cone and the first-order

perturbation then become
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vol&) =0 (341a)

vi(r,5,0,8) = [-ry + Vv(dvp) 1 cos ¢

8§
+ fbzg + h = yzq + h {ug(8) + (dvy) }] cos 6 (341h)
r a8 6

+ higher-order terms.

The surface boundary condition (341b) for the first-order 8-velocity
perturbation sugqests the functional form for the dependency on-r, 6,7¢, and
t.--It algo suqqésts that tﬁe ﬁrobiéﬁ.can be decémposéd into two parts. The
termg in the first set of brackets on the right side of Equation (341b)
describe pure pitching motion about the vertex of the cone, that i3, the
motion for zpg 2 0 and h = 0, The terms in the second set of brackets on the
right side of that equation occur in the comhination of Yzp + h. If ¥ were
zero, this would describe pure plunging motion. When zq # 0, pitching about a
point along the z~-axis thus leads to an additional pitching contribution that
has the same form as a pure plunging motion, There are thus two bhasic
problems to be solved: (1) a pure nitching motion about the vertex, and (2) a
pure plunging motion. If Y(t) has the same form as h(t), then the pitching
contribution for zp # 0 can be obtained from the pure plunging motion,

Coe NDecomposition of the Problem

The boundary condition, FEauatinn (341b), suggests not only that gmall
contrihutions of pitching ang plunq;nq can be separated, but also that the
independent variables can be partially separated. Assume that the pitching

occurs at a freaquency w and the plunging occurs at a frequency ws such that

‘l’(t') = '1‘() e ’

fugt + 42
hg e ’ (342)

ht)

where yn and hp are conatants, the gmall »erturbations of pitching and

113r
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plunging, and 1 is some constant phase angle. The complex notation in
Equations (342) indicates that either the real or imaginary part is to be
taken in obtaining the final results.

It is now enlighteﬁing to write the boundary condition in nondimensional

form by iﬁtroducinq three nondimensional small narameters:

Cn = ‘po ’
€, = iwypnz . (343)
Ve
€p H iw,hneiQ .
Ve

The boundarv condition (341b) can now be expressed in nondimensional form as

v'(r,8,6,¢) = egl=(iwr) + 1_ (dvg) lelWt cog ¢

Veo Veo Vo dB8 §
-1 .
+ €,01 - (iwr) alelwt cos ¢
Yo
-1 iwgt
+ep(t - (i::r) Cle cos ¢ , (344)
-]

where

e 21 fuptd) + (dvpy) 1 .

= 49 §

<

The three small parameters €,, €,, and ep are linearly independent with regard
to yg, zg. and hp. Thus any one of these contributions could be represented
crnarately by the form

vi(r,8,6,t) = ef(r) el®Wt cog ¢ , (345)
where € represents any one of €43, £,, or €p and f(r) is the cnrresponding
coefficient that depends on r only. ULikewise the freauency, w or wq,
separates out along with the dependencv on t and ¢. 1t can also be pointed
out that the plunging motion could be represented in a different plane from

the nitching motion by replacing cos 4 by cos ($ - $n) in the coefficient of

£or where ¢ = ¢ represents the plane of plunging meotion.




As ~an be seen from Equation (344) the function f(r) is the same for hoth

el 15

€, and ep, that is, for the contribution of pitching ahout z5 # 0 and for
plunging. Thus there are only two independent problems to he solved: one for
pure pitching about the vertex, ¢ = g5, and the other for purs plunging, € =

€pe when the pure plunging problem is solved, the pitching contribhution ahout

29 *# 0, that is, for ¢ =~ ~g¢ can then be obtained by a suitable change in

notation. The general solution is a linear combination of the three solutions

A rgrq,.-_,mr,mw-, "y T \ﬂlm"l Fiaall ] H“'w

for the three reduced problems,

d. Shock Conditions

L

It is assumed that a shock wave 1s attached to the vertex »f the

oscillating cone. The shape of the cone gurface, given by Equations (335) or

—

(336), and the surface boundarvy condition /34%5) suggest that the shock-wave
surface should have the form

8

fg = B - eq(r)elvt cog 4 , {346a)

or

G(r,6,6,t) = 9 = B8 + eq(r)el®t cog ¢ = 0 , (346b)

for the first-order perturbation problem. Here 8 is the semivertex angle of

the bhasic axisymmetric conical shock, and € 3 €0s €5, OF €p for any of the
J reduced motions corresponding to the reduced houndary condition (345). The

function g{r) is to be datermined as part of the &nalysis.

The ungteady shock jump conditions for mass, normal momentum, tangential

momentum, and energy can he written in terms of the ghock=-shape function

G =0 as
Pe(DG) = pg(DG) , (347a)
Nt » g
) 2 2 2
Po(VG)4 + pai(DG) = pg(VG) + pg(DG) (347b)
Ot o Nt g
hd »>
Ve x VG = Vg x 75, (347¢c)
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2
) ’ (347d)

2 2
he(9G) + 1(DG) = hg(96) + 1(DG
20t o 2 Dt

>
where p, p, h, and V denote the density, pressure, specific enthalpy, and

velocity. The subscripts «» and s again denote the values on the two _.des of

11

the shock discontinuity surface. The material derivative is defined as D/Dt

9/3t + V'V, In adaition it is assumed that the gas is thermally and

calorically perfect such that

Pa ™ 2;:113 (34%)
P Poolen

In spherical components the freestream velocity is given by

a ~

+»
Vo = Vplcos 0 e, - sin 6 ejp). (348)

Assume that downstream of the shock the spherical velocity components,

density, pressure, and specific enthalpy, have the following firsteorder

formg:
u(r,0,6,£) = ug(9) + eul(r,e)ei“t cos ¢ ,
vir,8,4,t) = vo(0) + t:vl(r,e)e‘“"t cos ¢
wir,0,4,t) = ewy(r,8)eiWt gin ¢
plr,8,4,t) = pp(B)[L + cpl(r,e)eiwt cos ¢},

plr,0,6,£) = pg(9) (L + epy(r,0)relwt cos 41,

n(r,9,6,t) = hg(8)[1 + ehy(r,8)elt cos 41, (349)

Further, it is part of the perturbation process to transfer the shock
conditions to the basic conical shock. Thus for any variable Q(8)
Q(8, = Q(B, - €(40) g(r,e*®tcos ¢, on G = 0. (350)
a0 8
Subgtitution of Equatinns (343), (349,, and (350) into the shock

conditions (347) and sorting out tha zeroth and first-order problems lead,
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after a lengthy analysis, to the following results

Basic Conical Shock

N “paVesin B = PQ(B)Vo(B) )
Pw + PuVeZ 8inZB = pp(B) + pal(B)vg2(B) ,
he + Ve28in?B = ha(B) + 1 va2(8) ‘
2 2
pn(B) = pg(B) hg(8) e
Pw P he

First=-Order Perturbation
uy(r,8) = (Ve sin B + vq4(B)) (g + ra'),

vi(r,B) = (Vo cos B{g + rg') + iwrg) (2(y-1) -~ L)
Y+l

~iwrg = ug(Blrg' + (dvy) g .,
16 8

wil(r,8) = =[Vs + vp(B)lg ,
sin 8

pr(r,B) = 4y vg(B) (Ve cos B(g + rq') + iwrg)
y+1 an (B)
+ (ézn) g ’
a9 8 po(B)
pP1(r,B) = _2 [Ve cos 8(g + rg') + iwrg)[§p - y=1)
vo(B) Y+l

+ (dpg) _9 '
46 8 po(B)

hl(!‘,ﬂ) = P]_(!‘,B) - Dl(r,B) .

These definitions have been used

Eo 2 pw/pg(B) P
ap?(B) = ¥ pol(8)/pg(B)
Y 3 cp/cy .
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The baslc conical shock conditiona (351) are the usual shock jump conditions

P

across an oblique shock. The firgt-order perturbation relations (352) are

"
PNy

the boundary conditions the first-order perturbation variables.muat satisfy at

ERRJ

9’8.

e, Perturbation Equations

']
e o Al AR e

- The governing equations for inviscid, nonconducting, unateady flow are

mass: ;
»> + j
3p+V sV +paivv =0 ’ (354a) 3
3t :
momentum: :
+> > > 3
PrAV + V(V2) - Vv x curl V] = -Vp ,

at 2 (354b)
energy: _
. :
(3 +VveeWN(p) =29 . :
3t ;$ {354¢) :

In writing the energy equation (354c) a thermally and calorically perfect gas
has heen assumed., Although Fquations (354) form a closed get, it is useful in
the engsuing analysis to replace one of them hy the equation for total
enthalpy:

+
P(3 +V * V)(h+ V2 =3p

3% ? t . (355)
Now agsume for the basic flow and the perturbation variables the forms

aj-an by Equations (349). After these expressinns are substituted into the

aoverning equationsg, the bhasic-flow problem and the perturbation problem can

bhe sorted out. The governing eauations for the basic flow are

vg dpp + Ppl2upn + dvg + cot 9 vpl =0 ' (356a)
49 48
polun dug + vg dvgl = - dpg ’ (356)b)
46 A8 49 !

vy = Aug , (356¢)
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297 = constant (homentropic) . {3564)
Po

In addition, Equation (355) yields for the bagic flow
(357) =

hg + unz + sz = ho + Ve = constant .
2 2 3

To express the equations for the first-order perturbation variabhles, it

is useful to utilize the operator

o
-

D = jwr + uypr ;3 + vy
dr (358)

(-3
<D

baladuioils o e

which represents r times the lowest-order material derivative to produce

mass: : i
Dpq + 2uy + r duy + (3 _&n py + cot Blvy 4+ 3vy + wycsCc B =0 , (359a) 3%
-1
dr a6 38 B
r=mom: - 3
Puy =~ vovy = - ag2 r 3py (359b) g
Y dr ii
¢=mom: i :
sin 8 Dwy + (ug sin 8 + vy cos 8)wy = ap? pyq , (359¢) Zé
Y 3
totai-enthalpy: ii

i
D[an2 (p1=Pq) + uquq + vovy] = anz iur ny , (3594) !%
energy: -
b
ii
Dipg=Yp4y) = 0 , {359%¢) :
where use has been made of the results f
1
hy = py =0y (360a) ;
3
1
ag? = Ypg/Pg (360h) :
3
hg = ap?/(y=1). (360¢) :
Equation (360a) follows from the thermal eauation of state !
;
p_ = _ph . (361) '

Po  PoMn
The solution for the basic axisvmmetric flow past a cone will bhe
congidered as known since a very accurate approximate solution for slender
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cones is available. Now direct attention to the solution of the first-order
perturbation equations (359) by means of series expansgions.
t. Solution by Series Expanslon
The appearance of the radial coordinate r and its derivative in the
equidimensional combination r{d/3r) suggests that any one of tha perturbation
 functions poy(r,8), pi(r,8), ui(r,0), vi(r,0), wl(r,'e).‘ for instance Q(r,9),
can be expanded in the form

! Qx,8) = I (dwr) On(9), (362)
i n=-1 Ve

w“here the functions Qn(e) depend only on 6. Here it has been antioipated that
the first term in the gseries may start with n = -1 since the boundary
condition (344) includes a term proportional to r-l. Purther, aince the
anqular frequence w appears in the combinmatlon iwr in the perturbation
equations, it is useful to use the combination iwr/Vs as a nondimensional
representation of r. It can now be seen that

r3Q =L n(iwr)? Q (%) , (363a)
Ir nw=1 Vo
ot [}
30 2 (dwr)™ Q, (8) (363b)

39 n--l VQ

DO = (iwr)™ (-upQ.; + voQ'.1) + VaQ.p + voQp'

Veo
b L]
+ I (lwr)™(VeQn-1 + nupQn + voly ] (363¢)
n=l Voo

With these results in mind, assume the following expansions:

u(x,0) =T (Lwr)? U, (),
Voo nw-1 VQ

vilr,8) = I  (iwr)" v,(8),
Ve n=-} Vo
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wi(e 8) = L (fwr)P wo(8),
Ve neel Ve

-
P1(r,8) = L  (fur)M p,(0),

ne-1 Voo
o
Pl(rre) =L (ig;)“ Ry(8)e (364)
nwel Ve ,

“The functions Un, Vn) Wp, Py, and Ry are all dimensionless. Better approxima-

tions for the sum of the series can be anticipated as the value of the
dimensinnless combination, wr/Ve, becomes smaller.

Expansions (364) can be substltuted into the perturbation equations
(359), and the coefficients of like powers of (iwr/Ve) can then he collected
and collectively set to zero for each power. These can be expressed as

& set of equations for nw <}, n= 0, andn > 1. Por n = =13

-ug Rop # vg Roy' # Uy + [dinon + cot 9V + V_3' + W_; cac 8 e 0, (15%a)

Ve Ve a8
“ugUoy + vogUop' = vgVey -~ 82 Poy = 0, (365b)
YVe
volsin 8 W.1)' - ag2 P_| = 0 p (3650)
Ve
~uglay + vpd'op = 0, (3654)
“ug(Pay = YR.) + vo(Poy' = yRy') = 0, (16%e)
where

Jo1 5 __8p2 (P.p - Rep) +ug Ulg +vg Vo o (365¢8)
(Y=1)Va

Voo Ve
The deflned function J_] represents a perturhation of the total enthalpy. The
governlng equatlons (365) are homogenenus.
For n = 0,

vaRo' + 2Ug + (Alnpg + oot B)Vy + Vy' + Wy cac 8 & =Ry, (366a)
Vo a8

valUp' = vpl = -ValU.p (366b)
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sin 0 VO“O' + (up 8in 9 + vy cog 0}V, - 2&3P0 ® ~Veo 8in 0 Wy , (366¢)

YVeo
vodo' = ag?Pey - Vaday (3664)
YV
vn(po' - Yno') @ ~Vg(Pay = YR_3) (3664)
wherae
Jo ¥ _ag2 (Pg ~ Kg) + uglly + va Vg (366¢)
(Y=1)Va® Ve - Vo S

The tarms on the right side of these equatinns depond on the leading functions
in the series expansions, .3, Va1, W1, Pay, and R.y, which are to be
determined from the homoganenus aquations {(368).

Correspondingly, tha sot of equatinns for n > 1 is given by
n?» 1y

nugRp + %nnn' + (240}, ¢ {d:ggg + cnt AV, + V' 4w, cec 0 @ <Ry, (367a)

Ve -

N uglly + VaUp' = voVpy + 802 n Py » ~VaUp.y , (367b)
YVa
vo (sin 8 wn)' + (n+1) ug sin 0 w,
- 302 P @ =V ain 0 Hp.q (167¢)
YVa
nupip + vy Jn' = a2 Prog = Ve Jpay 4 (3679)
YVe
n up{®y = YRy) + vp(Pr' = YRR') ® aVgu(Pay = YRy} (367e)
whnve
Iy 5 __ag? (Pn = Ry) +ug Up + vy Vy (367¢)

Again, these anquations Aara {nhomngenmoua, AnAd tha right nides of the equations
Fovr the 0, variahlas dAepend on the (,.¢ variahles.

var the caga nof pure pitrhing mot{nn about the vartax, the perturhation

parameter is € = ypn, and Fouation (343) beenmas
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vi(r,8) = 1_ (dvg) - (iwr) . (368)
Ve Vo d0 § Vo

In terms of *he gsories variahlan, thus are obtained

V.y(8) = 0 ' (369a)

Va(8) = 1_ (dvy) ' (369b)
Va A9 &

V() = -t / (369¢)

Val6) =0 , n22, (3694)

Sinca the gst of Fquations (365) that qoverns the Q.4q variahbles is
homogeneous, tha houndary condirion (3A9a) leads to the canclusion that all
the Q.1 variahles are zaro for the readuced problem of pure pitching about the
vartex, Hence 'l_q @ V.q ® W_qy o P_q w R_¢q4 n 0 for this raduced problem. As
shall be saesn, the shock condition La thus satisfied corraspondingly by

Juq=0,

The lowesteordar problem is thus tha sat of equatiana (366), which now hecomes
homogeneous, with the houndary cnnAition (369b).

For pure plunging motion 4it is <onveniant tn chocse the perturbation

parameter ¢ as the nondimensinnal form g = iwhoein/va. The surface houndary

condition (344) now hacomes

velr,8) = =(4wr)”! (up(8) + 1 (dvg) ] + 1. (370)
Ve Voo Voo Vo 48 &
In terms of the serias variahles,
Voq = = 1 {ugl8) + (dvg) ), (371a)
Vo a9 6
Va(8)y =0 , no> . (371¢)

The contribution for pitching motien about the point zp # 0 is obtained
by choonsing the parturbation parameter as € = {wypnzn/Ve. The surface houndary
conditions ara thus the same as Fquations {333) and (334), and the results of

the pura plungina problem can he utilizad Airactly. The resultas for the total

141

o b

la

LTI




pitching and plunging problem will thus be & linear combination of the three
raduced problemg.
The series expansions (364) suygest that the functinn g{r) in the

shock-shape equation (346a) can he expanded in the form

glr) = [ (iwr)? g, , (372)
ne-1 o \ S o

where the parameters g, ara constants to be determined.
‘ For the case of pure pitching ahout the vertex, £ = J,5 and all the Q.4

variables are zero. It follows that a_y = 0. From Equations (352) are

obtained for n = 0:
Ug(B) = golain B + vp(B)] ; ' (373a)
Ve )
{

Vo(B) = gnt{2(y-1) = En} cos B + 1_ (dvp) ) ' (373h)
y+1 Vo 48 3

Wo(B) = ~gpl1 + __vp(3) ! ’ (373¢)

Vo sin B
Po(B) = gnldy Ve va(B) cos 8 + _1_ (dpy) § (3734)
y+1 ap<(8) po(R) d6 8

Ro(B) = gp{2Ve co8 B {69 = y=1} + _ 1 _ (dpg) ] . (373e)

va(B) Y+1 pplB) 19 B

For n 2 1, are obtained

Up(B) = [sin B + vp(3)](14n)gy, ' (374a)
Ve

Vp(B) = [cos 3(1+n)a, * gp-qi(2(y=1) = &q4)

Y+1
= 9p-1 * [=ncos 8 + 1 (8vp) ] g9, . (374h)
Ve A0 8
Wn(BY = ~anf{1 + __vg(8) ) ' (374¢)
Ve 8in &
Pa(B) = 4y Vovp(B) fcos 3it+n)a, + an.q: + (dpg) (3744)
n =7 n In £py)  Gn o
Y+1 ap<(8) 49 B pp(R)
141
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Rn(B) = _2Vo f[cos B(1+n)a, + gnqil6g = Y=1) + (dpg) gy + (374e)
vp(B) Y+1 49 B pg(B)

Note for all cases that

gin 8 W (B) + Un(B) =0 , na>n0 . (375)
n+1

For pure plunging motion, the perturbation parameter is given by € =

iwhoeiﬂ/vw. From Equations (352) and (372) there exists for n = =1;

Ulqi3) = 6 ’ (376a)

Voq(R) = [cos 3 + 1 {dvp) [a.y ' (376h)

Woql(B) = =(1 + wvp(B) ' a_y / (376c)

Vo 8in 3

P.q(8) = (dpg) g-1 , (3764)
13 S 90(3)

Roq(B) = (dpg) g-1 . (3762}
46 2] 00(3)

The regvlts for n 2 0 are the same as 7ivven by Tauations (3174).
Some integraticns of Eauations '387) €ar n > 0 can he accomplished when
the basic-flow velocities ugt?) and va(Qd) are regaried as kXnown. Now is

introduced the factor

9
1(8) = exp ([ vp(3) a6 13773
R Vn("’)
where it 1is noted that T(8) = 1. The enaryy equation (367e) can now he

integrated by means of an inteqrating factor, and gives

i
]

P (pn_1 - YRn_1)59 ’ (378)

a T YPn = Splf}

W O
I

<
i)

where Sp(B) = P (B) - YRL(B).
The functlon S (8) is *he nth-order entropy function evaluated at the

bagic shock. To see this, note for a  thermallv and calorically perfect
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gas that

s=8n = n(_p (p )~V)
cy Py Po (379)

Now if the notation is written

- 3
s-sp = €[ T (iwr)Ps,(8))etWteos ¢
Cy na~l Ve ] (380)

r then with the use of Equations {349, and (364) it is found that
5p(8) = Pa(3) = YRy(S) (381)

With the aid of the shock conditions (3744,e)

S,(B) = 2YVevpn(B) [ 2 + aQZ(B) (y=1 - 59)3[{Y4n)g, cos B + gn_q) « (382a)
ap<(8) Y+l vge(8) Y+

By means of the basic-flow shock relations (251), this can be simplified to

the form 1

§h(8) = = Vwéy(y=1)(1=E5)28in 3 [(1+n)g, cos B + g, _q] . (382b) |
ag<(8) !

The total-enthalpy equation (367d) can he integrated similarly and

gives
0
Ja(8) = Jn(B) + Ve | IN (252 Py ~ Jpoq1d49 (383,
1n N8 vy YV

where J,(9) is defined by (367f). From the shock conditions (374) and (351)

it can be egtablished that

W

In(3) -(1-5p) sin 3 gn_1

4

~Up-1(R)/n . n#0 . (334,

Equatinns (378) and (383) can be regarded as two equations for P, and

Rpe Flimination of R, bhetween these two equations yields
ap2(8)Po(3) = ={ug Up + vy Vpi + 1 [Jn(B) - Sp(B)ag2(e))
YVeo? Vo Vo mn Y (Y=1)Va?2
8
- 111D {uglpag + voVp-12dd . (385)
" 3 vy

When the identity
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ug IMUpg T 1A (I ULy - IR U, (386) )
Vo n 49 n S

is substituted into the integral in Equation (385), one integration can be

5

performed, and the equation can he rewritten with the use of (384) to read

202(8)Pp(8) = -{uy Up + vg Vp + Up_q] - SpiB)ag2(8)
YV Voo Veo n Y(Y=1)VecIn

+

™ ©

INU'pnay = Vp-q)d8 . (387,
n : _ S

1
n
This equation gives the pressure perturbation P, as a function of the velocity
per curbations U, and V. Thus when the velocity is known the pressure can be

determined.

The density function is found to bhe

dnz(e)ﬁn(el = -fug U, + vy Vg + Up_q} - S,(B8)ap°(3)
Voo Veo Voo n (Y=1)VgpeIl
9
+ 1 [ I™MU'por "Vaor + _8p2 (Ppoq - YRy.y,'d0 . (388)
. 8 n Y"'mv'_)

When the pressure equatinn (2397, is substituted into the r-momentum

equation (367b), the result ia

6
volUn' = (14+n)V,] = nS (8an2(9) = nVe [ IM U,y - V _q]d8 . (389,
Y v-1;VaI™ o oa n

This equatinn giveg a relatinon belween the velocity components U, and V,. At
the cone surface 6 = 5, the yelocity V (3} iz prescribed and vg{d) « 8. Thus
when rn » 1, Uy' at the cone surface "3 not analytic. This feature must be
accounted for properiy in the analysis, especially in any numerical
computation.

Whern Vp 18 4olved for from Eiatisn (387, and substituted into Equation

(387) for the prassure, the compatatinn results in

an2(91Pp( = =(ug Up ¢ vg Up' + Ugoq] - _ S.05,a52(8)
YVl Von Voo 141 n (140) Y (Y=1)VeeID
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=3
+ 1 J 1IN (U'p_g = Vp-q1dB . (390) ;
(1+n)1" B n ;
This expression gives the pressure in terms of the velocity component Uy onlv. f
After the pressure equation (390) is substituted into the ¢-momentum 'f
equation (367c), the outcome is
_ volsin 8 wy + Uy 1" + (1+m)uglsin 8 W,y + Uy ) = ) 3
l 1+n 1+n _ E
! *
S ~ Ve(Wp-q sin 8 + Up_q] ~ __Sp(Blan?(0)
{ n (1+0)Y(Y=1) VeI
|
! 0
+ Ve S IMU'gaq = Vp-9lad . {391)
{1+n) 1" B n

An integrating factor for this equation is I‘*“/vo, and a straightforward

integration thus gives

sin 8 W, + Uy = =~ Ve

I'N (gin 8 Wooq + Ugaqldd
1+n 7o

v n

w— @

) :
- S, (B) J 1 _ap2(9) ae ;
(14n) Y (Y=1)VuINTT 8 vy

9
*_ Ve ) I 1) I™MU'pog - Vpay)d8]d8 . (392)
(1+m)I1F3 8 vy B n

The shock condition (375) was taken into account, This equation giveg the
azimuthal velocity W, as a function of the radial velocity WUg,.

When the furction U, is %nown, all of the other functions can be
determined in terms f it., It thus remains to establish the governing

equatinn for 1'y. By means of Eguation (367e), first elimjinate the density in

favor or the pressure in the contim:itv equation (3567a);

nug Ppo+ vy Pt o4 (24r)01 + fd &n pg + cot 61V,
Veo Y Vo Y a8
+ V' +W,ocsc 0 o= <Polg/Y (393)

Now note the ldentity
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i nug Pp + vp Py’ 2 (nuy = vp (4n an?)')(ap2 Py} + vy (AOZPn)' .
ap*“ an ap .
(394)
B - The combination anan is glven in terms of I, by Equation (330), and V, and w, 4 e

dre given In terms of U, by ©Tquations (389) and (392). When the necessary

operations are performed and substituted into Equation (373), a single
;j differential equation fox 1, results, To simplify the form of this equation, ?
ﬁote ghe following fesul:é ohtaine? from fhe.Homeﬁtrnpic basié flow:

j (2n 2p2)' = (Y=1)0fn pg)' = ¥Y=1 (&n vg)' = =(y=1) vg_ (up + vg'). (395)
Y an

Using these results, it is now nossible to ohtain

(1 = va2)u" + leot 8 - vy {2nug + (g * vp')(2 + (7=1) vp2liu ' +
apn~“ an” an
(14n) [2 + a(1 = vy?) =~ csc28 - vp? {1+ (y=1) uy_ (ug+vg'}lU, = =, . (396)
an 1+n an an”
! The Ilnhomogeneous term, T,, for the right-hand side is given by
- 7 f ' ¥
Tn £ = 14n Py + 1+n [nug + vp (y=-1{uny + vp') Walpay
Y n an” an
+ 140 Vavg U'noy = Ve (Ulgeg = Vpey) (0 + vg2)
noag” | n &n”
+ nS,.{8) ap? ‘v cot I = Y vpl (up + vg's - nup ~ va'l
n 4 v 0 0 0 n n
Y(Y=1)Ve vy“I] ag
e
+ [nvg cot 0 - vp? (ug + vg){n = (v=1) vu?} - nPug) Ve [ INIM' 4
an” an® va®I™ 8 n
3
- Vpoy)d0 + csc?0 [ s.(8) 11 ag? @y
Y(Y=-11VeIMtT 23 vy
9
+ (14n)Ve | I'™D (sin 3 w _y + Upoq)40
1'vn 8 wvn o
2 a
- Ve ;L P INU g - Vpogidfiaal o, (397)
I r B vn it n

The inhomogenenus term, 7., Adepends o+ thno oreviously ahtained functions On.1
and tha entronv “anction at the shock < (R). Tmation (395) is a linear

14+
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differential equation with variable coefficienta. Now these equations are to 'E

be solved by approximate methods.
g« Approximate Solution for the Baaic Flow
For the basic axisymmetric flow past a slender cone, the approximate
: s ' - solution developed in Reference 21, which has proven successful in the

analysis of steady-flow problems (Reference 22,52,53) gimilar in nature to the

. Wq;,wm;ﬂnmmgwﬂmm {"”‘Tm s b

§ g
!

present unsteady-flow problem, shall be utlilized. It shall be assumed that

the cone is slender such that sin 8 = 6. In addition it shall be assumed that

[ T

the freestream Mach number My iS8 large such that when My, + @ and 6 + 0, the

i combination Mab remains finite. The pertinent parameter in this hypersonic

.
. oA 11

small-disturbance limit i{s the similarity parameter Kg I MyS. Thus the

basic-flow velocity components are approximated by

ug(8) = Vel1 - 52 {82 + tn(82)}) , (398a)
2 82 a2
vp(8) = -Vad (1 - §2) . (398b) ]
S :

The basice=flow shock anqgle is determined by

]1/2 . (399)

o
N!
A
On b

The temperature and pressure in the shock layer increase only a small

RIS e -4 ALY

amount from the shock to the cone surface. Hence it is posslble to establish ]

the following formulas:

T(8) = a2,(8) T 1+ y-1Kg2 (2 + 2n(8)2 - (6)2) , (400a) ¥
Ta am? 2 8 3 :
pal8) = 1+ y Kg2 (1 + 92 {1+ ()2 - (6)2}) . (400b) A

Alsn availhle are the formulag

vg T Vel + 5;) , (401a)
9

(In pp)' = Y(&n pgy' = - IXQ(UO + vp') .
an




i 1 e — o p— act A

T - uz __6_2_ (1L - 52)0
foz(e) 0 82 (401b)
f0 S Pm _ T g%-1 .
po(B) o? (401lc)

h. Approximate Solution for the Plunglng Cone (n=-1)

The approximate solution to Equations (365) for n = -1 can now be
obtalned when the basic-flow solution is known. The n = -1 order of
perturbation amounts to a shift in the origin of coordinates along the
inertial X axis. With this taken lntn account, the velocity perturbations can
be obtalned from Equations (333) when the transformation (332b) is taken into
account (with ¢ = 0). This produces

Uy (9 =0,

vop(8) = 82,
92

Wop(3) = 82, (402)
82

The scalar perturbation variables can alsn be determined by the translation of

the origin, and gives

= yvo2 §2 2
Po1(9) = YVa? 82(1 - §2)
30' 9 32 1]
R.1(8) = Va2 82(1 - §2)
ao“ 6 -(;2 ’
J_1(6) =0 . (403,

These results satisfy Equations (365b,c,d,e) exactly. Eguation (365a) is also
gatisfied approximately to within the accuracy of the basic-flow
approximation. The surface boundary condition (37la), V_;(¢§) =1, is
satisflied, and the shock-boundary ~onditinns (37%) are satisfied when

g.1 = =1

which provides the perturbed ghock shape.

i. Approximate Solution for the Pure P.tchinrg Problem for n = 0

|
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For the pure pitching problem tﬁe n = -1 variables are all rero, and the
inhomogeneous terms in Egquations (366) for n = 0 vanish. The surface boundary
condition is Equation /369b), which becomes

Vo(8) = -2 (405)
The shock boundary conditions, at 8 = 8, are given by Equations (375).
7 The pressure and density functions are given by the appropriate formg of’

Equations (387) and (388):

- Po(e) s - ﬂ_;[uoilo + VOVO] - SQ(B)
agp (y=1) , (406a)

Ro(e) = = Vo [(uglo + V0V0] - SQ(B)
a2 y-1r (406b)

where
Sg(8) = =Ve? Y(Y-1)(1-£4)2Bgy/ap2(8) (407)
is determined from Equation (382b). The velocity components V, and Wy are

determined from Equations (389), or (366b) and (392):

Vo(8) = Uy (8) ' (408)
8
BWg(9) = ~Ug = _Sp(B) 1 Iag2 a8
Y(Y=D)Ve T B v, (409)

The governing equation for Uy is given by (396), which for small angles is

given hy 2 " ' 2 ’
(1 - vp“)Ug + [1 = vpluy + vp ){2 + (Y-1)vg“}ltg
ap b ag 3%7
+02-1 =-vp?2 {1+ (Y=1) wplug + vg') N Ug =1, (410a)
T e
where
9
To = Sp(3) ] Iag2a8 (410b)

1
p Y{Y-1)VaoI B vj
Now the variable coefficients of ‘!, Hn', and UO" are considered, The

combinatinn vg/ap vanishes at the body and, for large values of K,_,is small at

SI

the shock. It .3 thus reasonable to neglect vyp/apy compared to unity where it

appears on the left side of Equatinn (410). This {g tantamount to a
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congtant=-density approximation, and it has heen found to yield excellent
results for all values of Xg (References 23, 52, S53). Consigtent with this
approximation is the assumption that 1/9 is large compared to unity. Finally,
since 302(9) varies very slowly across the shock layer, it is replaced by its

value at the shock. Thus the problem (410) is approximated by

e 4+ Uy =1 Uy =Tp (41la)
6 07
" where
8
! To ¥ 1 Sp(Blag(B) [ 1_ 46 .

1
82 Y(y-1)Val BV,

The complementary solutions to Eguation (41la) are 8 and 0'1, and thus it is
easy to estahlish, since V4 = UO', that the general solution that satisfies

the shock conditions for Uy and Vg is

Up(8) = 10(B) 8 + 1 [BVA(B) = 1,(R)118 = B

8 > g9
9 9
+ 8, Tpd% -1 | 62 7Tyd0 . (412)
2 8 20 8

The soluticn can ke commleted bv the evaluation of I (Egquation (377)) and

the quadratures of Tg. Ry means of up * Ve and vp = “Ie(1-82), are ohtained

37
1(9) = ([B2-821 1/2
§7-¢7 . (413)
ana
Ta(9) = Sp(BlapZ(py 1 11 -~ 82-82) (414)
Y(Y-1)VeZ 87 Y B2=52

When the auadratures on Tp are evaluate? and the shock conditions {(373a,b),
(407b), and (401lc) utilized, the velcoritv Uy can bhe written in terms of z =

A/6 and a B/8 as

1¢n

i




up(0) = 906[57 - % (

o Y+ [+ 2
«1_ {-1+g +3 221+ 20241 tn'ge/e?-1 1) . (415)
P a3 4z 4/ a2
. a2/021 z+/z2=1

The velocity Vo is determined by Vo = Ug':

14

Vo(8) = golt =~ 1 ¢ + 1.)(1 + g?)
0 90— - %

f g o2 2 Y+ o z

{ - 1 f{=0o_ +1 ZZ=1+ 2221 n{ g+/aZ=1 1} . (416)
| 3o’ zZ  z / 921

! z2/g2-1 z+/221

’ The shock-shape factor gy is -determined by imposing the surface boundary

condition Vy(8) = =2, Solving for gy then gives

1 == 3 +0%1+ 1+ nla+ o711 . (417)
% 802 y+1 3
803/02=7

The shock=shape factor g is thus given as a function of ¢ and vy, or,
alternatively, as a function of Xg and Y hy means of (399). The factor gy is
shown in Figqure 44, which will be Aiscussed later,

The pressure can he obtained from Fgquation (406a) and is

ap2(8)P(8) = apl- 1+ 1 (4 +1)(1 - 202 + g2)
YVes© 6 0’z 2z y+1 ZZ

N

+ 1 {20 -0 + 22=1 (2 + 1)

307z 2%/ 97 z

inl 3 + /57:7]

+ (4 = 1) z + /22=1 } « 1 {an2(8) - 1}] . (41R)
z 23 93 an2(B)
0
/aZ-1

The reasults for n = 0 correspond to the results of steady flow at an
angle of 2ltack y. T, these results are equivalent to the resgults of Doty

and Rasmussen (Reference 23).
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3. Approximate Solution for the "are Ptiching Problem for ns= 1,

For n= 1, the problem is govarned by the inhomogeneous equations,
Byuation (367). fThe surface houndary condition is V4(8) = =1, asg given by
Equation (369c), and the shock houndary conditiona are given hy Equations

(374), The pressure ané density integrals are given in termg of the velocity

by Equations (387) and (388):
anz(e)p!(e) = ~{up Uy + vg Vq + Upl = S5(B)an2(8) , (419)
YVes Voo Voo Y(Y'1)vn I 3

ao2(e>xi(e) = -{ug Uq + vy Vq + Ug) - S3(B)ag2(8)
v, Voo Voo (Y=1)Va‘1

e
+ 1 | 1a52 (Py - YRp)AO . (420)

The velocity components V4 and Uy are related by Ecuation (389):

volUy' = 2Vq) = S9(B)an?(8) . (421)
Y{(y=1) Vol 3

The azimuthal velocity component {8 determined by

8
200y + Uy = = 2Ve | I2 (BWg+U,)d8 i
P A k
0 b
- 81(B) [ 1892 a8 . (422) 1

Y(Y=1)VaI€ B vy

Finally, the veloecity function tJ4 is governed hy Eauation (396):

(1 = v 2)U1" + (1 =~-v {2ug + (ug + vp")(2 + (y=1) ¥ 2}]U1' +
207 5 A a0”

N

{1+ (y=1) uq_ (ug+vg")}JU4 = T4, (423a)
an?

N
w
]
P
]
3
|-
]
> i<
>

where
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= 2 .
T4 3 =2 Py + 2Vo(ug + vp< (Y=1)(up +
Y n- ag

* 2Vwvg Ve + __S4(8) a2 (vg -
ag*“ Y(y=1)Vw vgel €

0
+ 1 (__Sy(8) ] 1892 a0
82 Y(Y=1)Ve1? B

vo
]
+ 2V | I7 (8wy + 1p)dA0! .
ITBVO

tauation (421) shows that 1" is gingul
is nseful tn introduce a new variahle 114*(8

replace U1(9). 83 guggested hy Fquation (4

vg'llg

(1 + 1v92><u0 + vg')
ap

(423b)

ar at 0 = 5 since vp(8) = 2. 1Ix

), which is not sinqular, to

21), write

)
y(8) = 204%(3) + _54(8) [ ap?(9) d6 (4242)
Y(Y")Voﬂ 3 VOI
sach Lhat
Ve(9) = vy, (424h)

in agreement with Fquatinn (421), Substitution of Equation (424a) into

Bquation (423a) gives

(1 - xn§>01'" + {% - vo_ {2uq + (ug + vg')(2 + (v=1) va?)huy*' +
0

ap ag a
% .
23 =up? = 1 = vp? {1+ (Y=1) up (ug + ovg) ] Uyt o= Ty, (425a)
an 264 an” an
where

m % 2 .
Y = - gn + V [Un + v (Y-1)(u0 + vy )
Y ag? ap”

2
+ _S1(B) lug-{3-uy?-_1 -v
YY1V I an? 2892  a,
] 2
+ 1 [ 84(B) 1 I apn® d3 + 2Ve
202 Y(Y=-1)Ve I2 B viq T
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an
9
2 (1 4+ I:; uplug + vp'))) [ ag? 48]
80 “ B V{)I
9
| 12 (3w, + vpras) . (425b)
R va
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T The singular behavior has heen removed from the inhomogeneous term,

An approximate solution to Equation (425a) is obtained by a process

Heri

analogous to the previous analysis for Uy, To begin, the ratioc vp/ag on the
left side of Equation (423a) is ignored since it vanishes at the body and is
small at the shock at least for large K. In the coefficient of U4q*, however,
the ratio uoz/aoz is not small for large Mws. $Since ug * Vo and a;, = ap(8),
tha result is

up?(8) = V2 =x2 , (426a)
302(6) anz(B) W

where
; 2Kg2(1 + y+1 Kg?)
’ <2 3 2 . (426b)
(1 + YRgD (1 + y=1 Kg?)
2

Use wag made of expression (400a). <“onsistent with the hypersonic

2

 /ag?

small-disturbance approximations, it can be seen that the factor up

should be retained since it is of order 1/62 when X§ is held fixed. Thus

Equation (425a) is approximated by the eauation

U™ + 1 Ug*' = (k2 4 1 )U4* = T4* . (427)
8 52 92

Refore dealing with this equation, an alternative form for the
irhomogeneous term T4* is obtained

when a02(0) = aoz(B) is treated as a constant in the integrals in
Ecuation (428b) for T4*, and Equation (409) is used to evaluate the integral

with 9wy + Up, the results are

Ty* = = Py + Ve [lugly + vpVpl + vanZ (Y=1)(ugy + vp')Up
Y an an

2 .2 '

+ S9(B) (1 + aps {=3 + vp2 (1 + (y=1) upfup + vo' M) }H(1 = 1))
Y(y=1) ng an ap? 1

+ a02(B)  [S4(B) I2-1 = 54(3) (1I-1)2) . (428)
297 Y(Y=-1)Vg? 17 17




The tenn aoz/v,2 is of order &7 when Kg is fixed and can be neglected in the

coefficient of S4(B). Further, the second term on the right side of Eguation
(428) can be replaced by means of (406a}, and T4* can he approximated by the

hypersonic~similarity form

T" S - zpo + VQV 2 (Y‘1)(U0 + VO.)UO

Y ap
+ S4(B) = S5(B)
y{y=-1)
2 a 2 2
+ 1 _ap2(8)  54(8) I?-1 - 50(8) (1-1)2 ] , (429)
262 J(y=-1)vzl 12 12

It can be established that T4* is of order 1/6,

Now return to Eauation (427) which, by defining the new variable

$ = x B =xz , (430)
§
can De rewritten in the form
42 Uyt 4 1 AU - (1 + 1 Uy = 62 v, (431)
362 PRRTS I <2

This is the inhomogeneous form of the equation for the modified Bessel

functiong of the first and second kinds, I,(¢}) and Kqy/4). The solution that

setisfies the initial shock conditinng 114*(8 = 8) = 1 U,(B8) and U4*' (0 = B) =
2
Vy(B) is
U4*(8) = A I4(¢) + B Ky(4)
® $
+ 82 [1400) | 4Kq(9ITy* dd = Kqe(d) [ A1,(8)T(* 4d] , (432)
:(7 KQa g
U4**(8) = Vy(8) = x [A I4'(é) + B Ky'(9)]) ‘
) i
» 6 i
+ 8 113000 [ ¢Kq($)Te* A9 = Kyt () [ $T4(H)T¢* dé) . (433) !
K k3 Ko %
where 3
!
A Z BUJ(B) Ky(K0) = kaUq*(B)K,'(xa) (434a) %
i
B = -(‘OU1'(I3)I1'(<-IJ) - 3V1-'3) I4(x0) , (434Y) j
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and the Wronskian is

Kq(3) Iy'($) = I4(4) Ky'($) = V/p (435)

The shock boundary conditions, from Equations (374a,b), are

Us*(B8) = 1 Uy(B) = 8gy ’ (436a)
2 o
Vy(B) = gqy[- 8 + 1] +ggl-_4 + 1] . (436b)
Y1 a2 y¥1 o2

Further, the entropy functions are, from Equation (382b),

2

Sp(B) = =~ 30 - (437a)
Y{y=1) 2503
S1(B) =~ _x2 (2q; + gp) (437b)
Y(y-1) 2603

The shock-ghape parameter g; ia determined by imposing the surface boundary
condition Vy(§) = -]. Equation (433, then gives
-1 = x{AI}'(x) + BK:d(x))
8
< v

L)y [ ek (4T e - Ky (k) [ Ij(e)T "as) .
o Ko (438,

+ (1

g
K
The factor g7 = g3(Kg,y) can be factored out and solved for explleitly in
terms of quadratures, but the guadratures must be evaluated numerically.
Figure 44 shows 7; as a function of Xg, which will be discussed later. With
gq determined, the flow variabhles describing the shock-layer structure can
then be obtained in terms of quadratures which must be evaluated numerically.
Th :ge results will also be discussed later.

k. Approximate Solution for the Pure Plunging Problem for n = 0.

For the pure plunging problem, the n = -1 variables given by Equations
(402) and (403; constitute the inhomogeneous terma in Equatlons (366) for the
n = 0 variables. Equation (366e) yields th>» integral

Pp - YRy = SpP(B)

po(B8) - YRg(3) ‘

= - x2y(y=1) (gp + g.1) (439,
260
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Here recall that 4_y = =-1. The total enthalpy equation (266d) hecomes

which has the integral

Inl8) = JoP(8) + §2(1 - 1),
8 B8

= §2

)

(440)

(441)

Here it was determined that JogP{(R) has t' /- .ue as prescribed by Equation

(384):

JogP(B) = = § g_q =6 .
o] g

(442)

Bquations (439) and (441) allow the pressure and density functions to be

determined in terms of the velocities. Thus are obtained

Ppl8) = - _YVa? (ug Mg *+ vo Vo - §2) - saP(8) ,
an“(8) Ve Vo 9 -1

Ro(8) = ~ _Ve2 [ug Ug + vg Vo = 321 - 55P(8) .
ap“(8) Ve Ve 8 y-1

8ince U'_q4 = 0, Fquatinn (366a) yields the same result as for

pitching problem:

Ve = Uo' o

(443)

(444)

the pure

(445)

with this result, Equation (366c) can he dealt with analngousiy to the pure

pitstiing pro®lem, and thues iz ohtained
3
6wn + Ug = - _SoP(B) | 1ag2 40 .,
Y(Y=1) Vel 8 vy

The previous rasults can now he substituted into the contjinuity equation

{356a) to ohtain a sirgle mguatinn For g

(v - voz)n“" + 0 - vplup bovg') {24 (r=1) gng)] Up'
A n A

ap an an
12 ==y v G uplug 4 v ) NG TP,
07 ag, an
168

(446)

(447)

o

S At s

e B Attt PN
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where
2 ) ® 2
; 'roP=-1>_;_1-6vc.vo (e%oz) +%27&(:$,::?\)7.Ié13; as
F = - 2VaZ 82 (1 - 82)(1 - y=1 wg_ (up + vo')) + 1 _ SyP(8) ?Inanz as ,
L a? B 4 2 327 87 Y(Y-1Val B v
Ef 2 52 2 242 ) 8 ,
f _ --%%%_(1-%2)[1-%1%(1-%7)1+;ﬁe%él‘%‘hda.

(448)
This equation has the same form as the pura pitching case, bhut the

inhomogeneous function TP is different.

PRSP A IR s )

. The same approximations for the left side of Equation (447) can be made

ag for the pure pitching problem, and the approximating egquation is thus

Thae ghock bo. .ary conditinns from Faquations (374a,h) are

”0" + l Uol - % Uo - 'I‘np . (449) %

8 Y j

The solution to this eauatinn that satisfies the shock conditions for 9y and j

1

1

Vs hasg thre same form as Fquation (412): ?

'; Ma(0) = UglB) 8 + 1 [BV4(B) = UA(BI](8 = B] !
2 8 ©
.
8 0 é’

' , +8 | TP A8 - 1| 84ryP a9 , (450) 4

' 2 8 20 3 )
k|

i

.

PENTO

Ua(B) = 66;0/0 ' (451)

V[,(B) - '(Qn + 'J_’)(J__) + 1 9-1 . (452)
Y+1 0—!

vy

f Pecalling that 3 4 = =1, evaluatse the integrals in Fauatinn (450) and

L UFHERN SRR SN VES |

e e

g(8) = &(agpn=1)72_ =

]

. Yz - u?)
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-1 {1+ +3 ZZT+2e24+1 on g+ /o%-N1])

o3 az 4 v 021
4:!02-1 2z + V2t=1

+

8§ + x28 [{1z2+1) tn g + 1402 (22-02))
z 2 2 2 202 z

Y=1 <2{(22+42) &n g + _z_ (20% + 402 - 1) p
4 z z 409 : '3

+ 1 {1 =202 - g% - N (453)
g

1
20%z 223
The polar velocity is given by
Vo(B) = Ug'(9) = (gp=1)(1_ =1 (_4_ + 1.)(1 + o2
2 2 3\ @2 27

1 1 zZ-1 + 222-1 2n (g + /o2=11}]
303 22 z J/ g%-1
22/02-1 z + /221

! -1 + 53 ({z2=1 &n g+ (02-1)502-22)
z? 2 4 z 20°z

Z

- y=1 x2 {2222 &n g - 2242 + 1 (209 + 402 - 1)

4 z2 z z2 233
- 1 (1-22-0%4+ 3} . (454) '
2022z Z;Z

The shock-shaps factor is determined by imposiltion nf the surface boundary

condition V5(8; ~ 1. Solving for gy gives

- 3 +0241 4+ 1+ nfg+ ad5%]) ,
807 Y+l 4 ,

1 = 8o3 /o%-1
1-9¢ 1- gZ‘[(dY-lgz - y=1 ¢ [~in o0 + (0%-1)(20%-0%+1) 1
4 20 4 40° (455)

which is writtan Ln a form analenqgous tn formula (417) for the pure pitching
prohlem. Tha factor qg for the pure plungling probhlam is shown '‘n Figure 45,

andt it will he Alacunamd latar,
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With Ug and V5 known, the pressure can be obtained from Equation (443).

The solution is

2 2 2
an“(8) Pu(B8) = (gp=1)[ - 1 + 1 (4 + _1)(1 - 20° + g%)
YV § 92z 2z Y+l d?2 zZ

n{oc + /02°l

+ (4 - _1) z.+ /z2-1}) + 1-22 + 2 (1-322 fn o
z 2z z° 2 z3 z
Ya2-1
+ (02-221(29222-02+1) - y-1 x2 {2-522 &n g

20427 4 z z

(02-22)({20%22(222-1) - z2 + 02(8z2-3)1})
402>

+

+ (gg~1) lag2(8) - 1) . (456)
o 8)

apg< |
Numerical results for these functions will he discussed later.

1. Approximate Solution for the Pure Plunging Problem for n = 1.

The equations fQr n = 1 for pure plunging take the game form as the
equations in Section I1-4i for pure pitching about the vertex, only with §,(8)
replaced by S5P(8) and the inhomogeneous n = 0 termeg evaluated by the
appropriate plunging functions. The appropriate equation for Ul'(e), defined
by Equation (424a), {s Fquation (431), which is rewritten hera:

d2uy* + 1 auyt - (1 + 1yt = 82ny7P
a0 ®  Ad r 2 , (457)

where
T'P 2 - 2P + Vavg?(Y=1)(ug + vo' g + Vel &2
Y An agp 8

+ 51(B) = B84P(R)
y(y=1}

172

- SR S ol A st il - - - - T S Sy

il

e A :.m-mlil PRRBTRY

4 ok i

L
ORES TR FNTTIY. TITN

;
i



RS ALY =210 LA A

.

2 r 2 2
+ 1 an“(8) .S](B) J<=-1 -SOP(B) (I=1)4] . (458)
7262 Y(y~1)Va? 12 12

The solution to this problem that satisfies the shock conditions, which & a
the same as Equations (436a,b), i{s given in terms of the modified Bassel
functions by Equations (432) and (433), with Tl‘ replaced by Tl'P.

The surface boundary condition for the n = 1 pure plunging prohlem is
given by Equation (371c): Vy(8) = 0. This condition is different from the
corresponding pure pitching case. Thus the condition that Aetermines the
shock shape parameter gy shoulAd be written

0 = k(AL (k) + BKy' (k)]
5
K [
+ 811 () [ eKp(OITIP A - Ky (k) [ I (4)T*P ad). (459)
< Ko <g

This equation is analogous to Equation (438) with the left side replaced by
zero. The factor gy (Xg,Y) is shown in FPigure 45. All the other var.ables can
now be computed.

m., Results for tha Shock layey

Figure 44 shows gy and gy as functions of Xg for Y = 1.4 for pure
plitching about the vertex, The functint gy is computed from Equation (417)
and gy from Fguation (438). The function gg is equivalent to that obtained
for the steady=flow inclined cone by Doty and Rasmugsen (Reference 23). As
K5 goes to infinity, gy tends asymptotically to gp = 1,057, The function g3
18 negative and has a minimum near Kg = 1,

For pure plunging motion, the shock parameter g.y has the value g,y = -1,
Pigure 45 shows qp and gy for pure plunging as functions of K§ for v = 1.4,
The functions gy and gy ara computed by means of Equations (455) and (459).

For pare nlunging the factor gpy is posi<ive for small K4 and tends to gy =

-0,N16 as Kg tends to infinity., The function gy is negative for small values
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of X§, being gy = 0.5 at Kg = 0, becomes zero at Xg = 1.27, and tends to a

poaitive asymptote gy * G.075 as Kg goes to infinity.

The shock shape in the inertial coordinate system is given by Equation
{3462a), which is written here as

8g =8 ~ (Yo I (dowr)" g, +e€, I (dwr)" g,P
n=0 V@ nm=) VQ
[
+ €g L (iwr)" g P eltt o5 ¢ ' (460)
ne=1 Ve T - - - . L .
where
€, 2 iwdpzy (461a)
Voo
ep ¥ lwhpy el (461b)
Vo

and gnP represents g, for the pure plunging problem, Note that € = Y, denctes
the contribution from pure pitching ahcutv the vertex (zy = 0), €, denotes the
contribution from pitching ahout z4 # 0, and €p denotes the contribution from
pure plunging, This repregentation is singular at r = 0 owing to the terms n
= =1 arising from pitching ahout z5 # 0 and plunging.

The trangformation to the bhody~fixed system i3 done by means of Equa=ion

(332b) ¢

B = 6 + [Yg = (€, + ep)<$gg)-’]eiwt cos ¢ . (462)
(-]

Substituting Equation (460) into Fquation (462) evaluated at the shock, the
result is that the r~! tarmg cancel out since g-4 = -1, leaving

Bhs = B = (¥pl(gp-1) + (fwxdgy + ...}
Veo

+ e, {ggP + (dwr) g¢4P + ...}
Ve

+ e, {agP + (dwr) gD + .. 1 el®® cos ¢ . (463)
Voo
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Thus the shock shape represented in the body-fixed gystem is not singqular at r
= 0. Since €, and € are proportional to i = el®/2, it can be seen that there
is a 90 degree time phase shift assoclated with pitching about zp # 0 and with
plunging, relative to pure pitching about the vertex. When wr/V, is
sufficiently small, it can be expected that the higher-order terms in the
series expansions will be negligible.

The flow variables Qn(8) have been computed in an inertial gbotdinate
system. The series representation in this system is singular as r + 0 owing
to the terms for n = -1, It is thus useful to describe the flow in the
body-fixed system which ies not singular as r + 0 for pitching about z5 # 0 and
plunging.

Denote variables degcribed in a hody-fixed system with a
subscript . Then for any scalar variable write

Op(9p) = 0(8) P
= 0(8y + (6-8p)) & (464)
Since (0-8y) is small according to Fquation (462), it is possible to use the

firvrst term of a Taylor-series expanslion and obtaln

Oh(By) = O(3p) = (3Q) ¥y = (e * €p)(tur)~]ed®t cos ¢ . (465)
39 5b Vo

This transformation, when applied to both the scalar and vector variables, is
tan*mount to removing the n = =1 terms from the series description iu the
bordy=-fixed coordinates. 1In addition, however, the n = 0 term for pure
pitching about the vertex is affected, as Eguation (465) shows. This can also
be s3een in the expresslon (464, for the shock shapa. Thus for the prassure

for pure pitching about the vertex, write

19 Oy
= Pa(B8y) + [YVy (up + vp')) ’
0'°b 0 0
}59 9%
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= Po(0p) + 52 (4 42 ) | (466)
09 ;.;!z__ il )

\ (eb) eb eb

For the velocity components, first use Equations (333) before applying

the transformation (465). For the radlal velocity, then, the result for the

i
&
s
4

P Upp = Ug(6p) = va(Bp) y
e Ve
Py
= 2
; = Un(By) + By (1 = g ) . (467a)
: b2
. ] - ' - L
i Vbo(eb) Vo(eb) an(eh) ’
= Vo(Bp) + (1 + 82 ), (467b)
8y
Who(6p) = Wo(By) = vallh)
v’eb
= Wo(Byn) = (1 = 82 ) (467¢)
o o7

cagse of pure pitching about the vertex is

For n » 1, the first order perturbation problem is an(eb) = Q,(8)s Thus in
the body-fixed coordinates the functions for n = =1 are not present, and only

the n = 0 functions for pure pitching about the vertex are altered, as shown

above.
To illustrate the varlation of the velocity and pressure functions

between the shock and the body ia introduced the normallzed angle variable

I ————— T,

g* = 9 -6 , (468a,

such that ' = 0 at the body and 8' = 1 at the shock. %quatlon (468a)
represents the inertial coordinate system. For body-fixed coordinates, the
corresponding variable is

%' I Ap -3 (468b)

g -6

The two variables Alffer by the order »f e.
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Figures 46, 47, and 48 show the variation of Ug/§, Vy, and wé, for
pure pitching about 24 = 0, across the shock layer with different values of Kg
taken as a parameter and for y = 1.4, These representations are for inertial
coordinates. The function Uy/§ is positive and decreases from the body to the
shock. The function V, is negative and increases from the body to the shock.
The azimuthal veloclty Wy, however, is negative and increases from the body to
the shock for small values of Kg but Adecreasas from the body to the shock for
larger values of Kg. .Fbr Kg of ébout 2, Wg 18 nearly uniform.

Figures 49a, b, and c show the corresponding variations of Upqn/§, Vy0. and
Wyn for pure pitching about 25 = 0 in body-fixed coordinates. These are
essentially the same as could be calculated from Doty and Rasmussen (Reference
23,  For Uyp/6 and Wy, the values at the body, 8, ' = 0, are the same as for
these corresponding variables evaluated at the body in the inertial coordinate
systems. Comparison of the results in the two different coordinate systems
shows the different appearance the functinng take in the different
repregentations.

Tigqure 50 shows the pressure function a02(e)p0(e;/yv,25 for pure
plunging about the vertex as it varies across the shock layer, with Kg as a
parameter and Yy = 1.4, The pressure perturbation Py is negative ind decrea;es
a small amount from the hady to the shock for large vaines of Kg. For small
values »f Xg, Py decreases, reaches 1 minimum, and then increasas. Figure 51
71 .49 the eorresponding pressure function for body-fixed cooriinates, Pgp.
The pressure Pp) shows thae same tranis as Pp, but the values increase from the
body £ Ehe shock manntanically.

The reason the two predgar=a perturhation functions ln the two coordinate
systems are not the same .3 aganciated with the tranafarral of the actual

shoek and body Loacatiisne 24 the ln~atinn of the basic shock and hasic cone.
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For instance, the pressure at the shock in the two systems can be written to

the first order of perturbation as

p(8g) = pg(B) + (dpg) (0g-B) + cpg Py(B) el®t cos ¢ , (469a)
ab g

p(0hg) = po(B) + (dpg) (Bpg-B) €py Ppo(B) el¥t cos ¢ . (469b)
as 8

The actual pressure perturbations are given by the second two terms on the

right. These two terms must be taken in combination, in either coordinate

system, to determine the correct total perturbation,

The vaviations of Uy/$, Vg, and ¥, across the shock layer for pure
plunging are shown in Figures 52, 53, and S4. These functions are the same
for both the inertial and hody-fixed coordinate system repregentations. In
these computations the terms arising from the variation of a02 across the
shock layer, proportional to (y-1) in Equations (448), (453), (454), (4s5),
and (456), were neglected, The velocity Up is negative at the bhody and
increases toward the shock. For large values of Xg, Uy is negative at the
shock also, but it is positive for smaller values of Xg. The velocity
tunction V4 is positive and decreases from the body to the shock. The
azimuthal velocity ¥y increases from the bhody to the shock when Xg is large,
but decreases from the hody to the shock when Kg is small.

The pressure function aoz(B)Po(e)/vazd for pure plunging is shown as it
varies across the shock layer in Figure 55 for Y = 1.4 and various values of
Kg. The perturhation Py is positive and decrrases from the hody to the shock.

For pure pitcﬁinq ahout the vertex, the velocltv functions U,/é, V4, and
Wy are shown 1in Figures 56, 57, and 58 as functions of ¢'. Again various values
of K5 are shown and Y = 1.4, Tn these computations the second term in
Equation (429) for T¢*, nroportional t» (Y-1), i3 neqligile 3ince it arises

2

out of variations of ap< and § . .mall. For larae values of Xg, 'y i3 negative
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at the body and increases to pogitive values at the shock., For Kg§ about 2,

U4 varies only slightly across the shock layer. The nolar velocity
perturbation V4 decreases from the hody to the shock., For small values of Xg,
V4 is negative at the shock, being positive otherwise. For large values of
X5, the azimuthal velocity perturbation Wy is negative and increases from the
bedy to the shock. For small values of Kg§, Wy decreases from a positive value
at the hody to a negative value at the shock. The functions are the same in
béth inertial.ané gody;figeé coordinate desc?ip&ions.- - -

For pure pitching about the vertex, the variation of a02(6)91(9)/YV~26
across the shock layer is shown in Figure 59. The pressure perturbation Py is
positive on the body su. face and decreases toward the shock, hecoming negative
for small values of Xg.

For pure plunging motiecns, the velocity perturbations U14/§, V4, and w,
are shown in Figures 60, 1, and 62 as functions of ;. In these
computations the second term in Emuation (458) for T4*P, proportiona. to
(y=-1), is negligible since it arises from the small variation of a02 across
shock layer. The velocity perturbation 'y is nositive at the body and
increases toward the chock for large values of Xg. “or small values of Kg, it
is positive at the body and decreases “o negative values at the shock. The
polar velocity perturbation V4 decreagses from zero at the body to negative
values at the shock. The azimuthal velocity Wy increases from negative values
at the body, hecoming positive at the shock for small Xg.

Fuor pure plunging, the variation of anz(B)P1(0)/YVQ26 across the shock
layer is shown in Figqure 63. The pressure perturbation Py ig positive at the
body and decreases to negative values at the shock for all Xg.

n, Forces

For inviscid flow, the forces on a hody arise from the pressures exerte?
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on the body surface hy the flow. Omitting the force contribution from the

Phie

bage presgure, the force is glven hy

-

N _
, r==-[[pnas, (470)
( s

S

L)

where S is the slant surface of the cone and n is the ocutward unit normal on

, T the surface. The force s easy to reckon 1in body=-fixed coordinates. 1In this
case

n ds = egp(6 = &) sin § r dr 4¢

~ - ~

= (cos § cos ¢ ey + cos § sin ¢ ey = 8in § e;)sin § r Ar ¢ . (471)

’ Owing to symmetry, there will he no side forces in the y direction, and thus

for a cone of axial length L,

» 27 L sec § -
F = {-cos § gtn 8 | | p cos ¢ r dr d¢) ey
0D n
2n L sec § -
+ [84n28 | | prdr dé) e, (472)
0 O

To first order in €, the axial force in the z direction will arise only from

the hagic cone pressure pp. The main concern {s now with the component of

force in the x~direction, which is called the normal force:

2n L gec §
Fy £ -cos 6§ gin 6 | | p(6) cos ¢ r dr d¢ . (473)
n 0
In body-fixed coordinates, the surface preggure can he written
Ves
+ (g, + £5) {ProP(6) + (%wb,p(s) + oo ))elwt cog g, (474)
-]

where ppgP and pnP represent Py, and Pyy calculated for the pure plunging

problem. The normal force can now he written




B L kel

L.

T reeg

hadls BN C o A T
:

T e

F ® = 1 (L tan §)2 cot § py(8) (YgPpo(8) + (g, + €p)PpoP(6)

2
+ 2 sec § (1wL){ygPpy(&) + (e, + €,)PLP(6))
3 " Ve
+ 0((wL)?))edwr | (475)

Vo
Now Sp = W(L tan 6)2 can be raecognized as the bage area of the cone and

the normal force coefficient can he define.. as

Cn

- Fy .

1pxVw Sy
2 (476)

The result is then

CN - acct & 20(6 Q )(wo Pbo(s) + (C + ep) Pbop(é)

+ 2 sec § (1wlL) {Yg Pp1(8) + (€, + €p) PpyP(§)}
3 Voo

+ 0((wL)2))] elwt | (477)
Ve

This expression is exact and hecnmes approximate to the extent that the
functlons Py, Ppob, Pyp1, and Pp¢P are approximate.
Now recall that

v =Yg eiwt ’

h = hy elwt + 40

thun Bquation (477) can also be written as

Cy = =cot & pp(é) aoz( (4 Ppo(8) + (zq + ) PpoP(8)

Pao Vo Vo
+ 2 sec § {i& Ppy(6) + (yzqL + hL )Py 4P(8)]}
3 Veo Vol Va?
+ 1 sec?8 (YL2 Ppy(8) + (YzaL2 + KAL) Pp,P(8)) + 4 ) . (478)
2 e Hr s

189



The last ter&s involving Pypa(§) and PpoP(6) illustrate the nature of the next
terms in the serles that have not been evaluated.

When the higher-order terms proportional to Ppy(8) and PyP(6) are
ignored in Bquation (478), the normal-force coefficient depends on four
independent terms, These terms are proportional to the pressure perturhations
Ppol(8), PpoP(8), Pp1(8), and PyyP(8). It is useful to delineate these effects
by expressing the normal-force coefficient as a linear combination of the
effects due to ¢, @, Q, and ;. Thus write Cy as

CV = CNww + CN; (QZQ + ﬁ_)
Vo Veo

+ ¥ + Cyn (Pzgl + n) oo (479)

where the higher-order terms in the series have heen ignored and where

Cyy = =cot § gn(ﬁ Q §) PLp(éd)
’ (480a)
Can = -cot § pa(8) ag2(8) PpgP(8)
P va ’ (480Db)
CN; T -2 cot § sec § pp(8) 302{6) Ppy(8) . (480¢)
3 Po YVe
Cnyp 2 - 2 cot § gec § 90(5 Q §) PP (4804)
3

The coefficients defined by Eauations (480) are called stability Aderivatives.
The stahility derivatives CNW and CN& arise from pure pitching about the
vertex, and the gtability derivatives CN; and CN; arise from pure plunging.
The coefficient Cny is a static derivative since it depends upon tihe
ingtantaneous laclination of the c¢nne and not upon i%3 time rate of change.
The other stabhility derivatives, CN&/ Cu;, and CV; are Aynamic stability

derivatives since they depend upnn the time rates of chanae of § and h.
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Although the form of Equation (479) follows directly from the analysis,

it is not {n the form more appropriate for describing the dynamical motion of

a missile, The reason is that the analysis was performed in an inertial

coordinate system and Equation (479) follows directly from that analysis. The

forces acting on a migssile undergoing a general dynamical motion are more

appropriately petceived €rom an observer in a body-fixed coordinate system,

The forces actinq on a misgile are more appropriately described in terms of
the orientation of the wind relative to the hody; thus the angle of attack, a,
is more appropriate than the rotation angle {y, which is essentially an Euler
angle. .

Thus the primary variables (w,i,h,h) are changed to a new set of

primary variabhles (a,a, q, ﬂ) by means of the transformations (325), (327),

and (328):

Ylt) = =q(t) ,
Ple) = alt) + hit)/NVa ,
h(e) = ~la(t) + ale)] . (481)
Equation (479) can thus be written
Cqy = Cnag & = Cyp (92p) + (Cyg * CNh)(_éj
Ve Veo
A o . .
Cng (%) + bm“%) + ?,f%’i] , (482)
wnere definitions have heen made
“Na F Ony ’ (483a)
Cna = ~Cnn (483b)
Cng % Cnyp * Cam (483c)

or

CNw H ch + Cyg

These definitions may Aiffer with those of other authors. Since there sgeems
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to be no definite uniformity, care should be taken when comparing the present

results with others.
The static normal-force coefficient Cygq = Cyy i8 shown in Figures 64, §S,

and 66 and compared with other results. The gtatlic coefficient Cyng is the

same coefficient that is obtained for steady flow past an inclined cone. 1f
the dengity ratlio p(8)/p(B) were set equal to unity, the present result would
be the same as -that.obtai.ned_by Doty and Rasmussen _(_Pfeference 23). The
Newtonian result (Reference 33), valid strictly for X5 + @ and vy + 1, i;

Figure 64 shows a comparison with the exact numeri{cal results

.

cNa/coszc - 2
of Sims (Reference 54) and the empirical curve of Orlik-Ruckeman (Refarence
49). The present result shows a characteristic 4ip in the curve nea

For Xg > 1, the agreement with Sims 18 very good, becoming better as ¢
accordance with the underlying requirements of hypersonic small-digturbance
theory. As Kg + 0, the present result overshoots the correct linearized valua
Chya ® 2 by a small amount before it actually obtains the correct result at Kg
= 0. The empirical values of Orllk-R;ckemann are slightly too large for large
Kg and do not tend to the correct behavior 13 Kg + 0. Figure 65 shows a
comparison of the present results with McIntosh (Reference 48) and again with
Orlik-R;ckemann. The hy;eraonic small-disturbance results of McIntosh, which
ara numerical and limited to the range X5 € 4 are very accurate and agree well
with the present results when Kg > 1; the disagreement when Xg ¢ 1 ig less
than 5 percent. Figqure 66 shows a comparison of the present results with the
numerical results of Brong (References 45, 46). Agreement is good for large
Kg+ and the deviation from the results of small-disturbance theory owing to
finite cone angles Ls illustrated.

The dynamic stability derivative Cyp, which arises from plunging, is

shown in Figure 67 as a function of Kg. It has nearly the same shar: as Cyg4,
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although of opposite siqn, but doesg not tend to quite as large a value as Xj§
+ =, Again there is a characteristic dip in the curve near Xg = 1.

Figure 68 shows the dynamic stability derivative Cyq T =Cyy, which arises
from plunging, as a function of Kg. A comparison with the results of McIntosh
(Reference 48) and Orlik-R;ckemann (Refarance 49) are also shown. The
Newtonian result (Reference 33) is Cygq = 0. The present raesults agree well
with the.ﬁypérsoﬁic small—&isturbaﬁce reﬁults of McIntosh,-which Qefé iimited
to the range Xg € 2. The correct limit of linearized theory, CNg = 2/3, is
obtained when K5 + 0, and the present results are only slightly smaller than
those of McIntosh when 1 € Xg € 2. The empirical curve of Orlik-R;ckemann
produces values that are gliohtly larger than the other two resultsg, and it
does 0ot behave quite correctly as Xg *+ 0. A ~lLaracteristic dip near Xg = 1
is shown in all three results. Figure 69 compares the results of Brong
(References 45, 46) with the present results, as well as those of McIntosh.
The results of Brong show the same trends as the present results, but are
gomewhat larger.

Figure 70 shows tha dynamic lerivative Cny Z Cnyg * Crg 8s a function of
Kg when compared with the results of McIntosh and Orlik-Ruckemann, The
Newtonian result (Reference 33) is CN& = 4/3, and the linearized-theory
result, valid for XKg + 9, is CNi = 3/3., The present results show the same
“vend as the numerical small-distrubance results of McIntosh, agreeing with
the correct linearized-theory resulr at Xg = 0 and being slightly larger than
McIntosh for N.8 € Kg € 2, The empirical r2sults of Orlik-R;ckemann are too
large for small X§ and sliqghtly smaller than the present results for large Kg.
Figqure 71 shows a comparison with McIntonsh and with Tobak and Wehrend
(Reference 42) on a different scale fo: The present results agree will

with the potential-theory results of Tobak and Wehrend when Xg6 + 9. Figure
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72 shows further comparisan of the prasent resalta with Rrong (Raferences 45,
46) as well as with McIntosh (Reference 49) again. The results of Arong show
good overall agreement with the present results, especially for large Xj.
Figure 73 shows a comparison of the dynamic stability derivatjve Cng §
(Cyy ~Cna)» reckoned ahout the vertex, with the results of McIntosh and Rrong.
The present results tend to the correct limit of linearized theory, Ng = 2,

as Xg *+ 0, but otherwise they are larger than hoth the regults of McIntosh and

el AR

Arong, Te Aifferences between the present results are not great. A

characteristic dAip at X5 = 1 i3 shown in all three results:

o vt b owbobbie el baenn

2. Moment About the Vertex

The moment about any point zy on the cone axis i{s given hy

- * - ~ H
My = =f/ (r = zye,) x pnds ,
]
+ ~ »
= ‘40 - Zy1e5 X F ’
. -
= Mg - 1 PeVe? Sp 21 Oy €y (4%4)
> .

whare

- A

>
Mo = ~J] (r x pn) A4s
s (485)
+
is the moment about the vertex of the cone. When M; is expanded out, the

result is
- -
Mn="jJ DE¢Y'3S ’
g
21 I sec § - -
= -giné! ] picog ¢ ey + 3sin ¢ ex!r2 dr dy
9 N0
27 L sec § -
= [-ainé) ~crs b r? Ar 17 ey . (4RB)
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Thus by symmetry there is only a moment about the y axis.

A moment cnefficient is defined by

_1_ PaVec Syl
2
An analogous means to obtaining the normal-force coefficient provides
Cmo = Cuy ¥ + Cun (Y2q + _h)
Vo Ve
. Vo sz ’ (488)
where the higher-order te-~ . A the series have been neglected, and where
Cuy = 2 sec? § Cny (489a)
3
Ch = 2 sec? § O (489b)
3
Cuy = 3 sec? § Cyy (489c)
4
Cvn £ 3 sec? § Cnh . (4894)
4
In terms of the variables a, &, q, and ﬁ, the results are
CMo = CMa @ = Cun (d2p) + (Cmq * Cmn) (_h)
V” Va:
- Cygq (QL) + Cyq (al + gzgl] (490)
q a (& a_nz
Vo Voo Vo
where
CMa = Cmy . (491a)
CMa = -Cmh ‘ (491b)
Cmg = Cmy * Cwn
o:c .
My = CMg * CMa (491c)

[
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The moment coefficients are proportional to the normal-force coefficients, as
can be geen from Equitions (489).

Unsteady supersonic flow past a circular cone undergoing harmonic
pitching and plunging motions in a plans has heen analyzed. The goal was to
obtain approximate analytic results that are accurate and useful in a wide
range of practical and theoretical applications. The results were cast in the
similarity form of hypersonic smg}}-d;sturbance theory. whereas the first
terms in the perturbations series (Uy, Vg, Wy, Py) were obtained in relatively
simple analytic form, the second terms (U, Vi, W;, P;) involved gquadratures
of Regsel functions which, while heing in arnalytic form, reaquired numerical
evaluation of the quadratures, From comparisons with other related works
involving numerical integrations of the governing Aifferential equations, the
present results showed all the proper trends when Xy I Mxd was varied. For
the static and dynamic stahility Aerivatives, the correct linaarized-theory
results were recovered\when X§ + N, and a characteristic dAip in the curves was
shown near Kg = 1, wWhile being more accurate for large Xg, a good
approximation is given over the whole range of Kg. This is in accordance with
results obtained previnusly for steady flows by means of the same
methodology.
$. FEFFECTS OF BLUNTNESS

The desirs for increaszed maneuverability in the high supersonic, low
hypersonic Mach numher regime has led to a renewed interest in the
aerodynamics of nonsymmetric lifting hodies (Referenceg 55, S6). For example,
lift-to-drag ratios near unity can be achieved with glender bodies possessing
elliptical crogs-sections whose major-to-minor axis ratio is of the order of
two or more, Circular crosg-gectinns, {n contrast, achieve maximum

lift-to~drag ratios well helow unity. Sianificantly higher lift-to-Arag
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ratios can be achieved at hypersonic cnnditione with so~called waverider

configurations (References 57, 58). Recent work has shown that rather attractive

waverider vehicles can be developed from the conical flow solutions for

supersonic flow past conea whose cross-section deviates slightly from a circle

(spre Figqure 74). These vehicles efficiently integrate volumatric storage and

lifting requirements, can achieve lift-to~dArag ratios of three or more at Mach

nvubers tangiﬂg from_three_;o_ﬁ;vel and behave surprisingly well. at .off-design -
éonditions.

Recause these new waverider configurations are derived from conical flow
solutions, they all have sharply pointed noses. These pointed noses invite
serious heating problems at higher Mach numbers. One approach to alleviating
these heat transfer prohlems is to alightly blunt the nose of the vahiclae.

The effects of nose bluntness on supersonic and hypersonic flow past
axisymmetric vehicles was studied extensively {n the 1960's, Numerical work
by Sychev (Reference 59) and Guiraud (Refarence A) as well as analytical work
by Yakura, riorinc, and Schneider (References 61,62, and 63, respectively)
using hoth Airect and inverse methods showed that slight blunting of the nose
of a slender vehicla in a hypersonic flow can significantly changa the forces
on the vehicle. 1In particular, the fluid wetting the hody passes through the
normal portion of the how shock wave at the nose of the vehicle and, as a
~ro.gequence, will have a higher entropy and lower density than the fluid which
passes through the more oblique portions of the shock wave, The use of the
hypargonic smal). Aisturbance equations to calcvlate the flow past a slender
body overestimatas the entropy near the hody and thus overestimates the
surface presgsure., Yakura (Referance A1), using the method of matched

asymptatic expansions, and Fiorinc (Refarence 62), using An inverse method,

have shown how to eliminate this error that rasults from using the small
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disturbance equations for the case of axisymmetric flows.

This section deals with the effects of nose bluntness on hypaersonic flow
past nonsymmetric vehicles such as might arise for flow past a slender body at
angle of attack or a body with an elliptical cross-section. To allow

{ : analytical progress, this work is restricted to slender bodias whose

cross-section deviates slightly from that of a circle and employs a reqular
perturbation technique. By adopting an inverse approach in which the shock
wave is specified and the associated body is determined, analytical results
are obtained that are easily interpreted. The approach is a generalization of
that of Fiorino and Rasmussen (Reference 64) for axisymmétrlc shapes.

The governing equations and boundary conditions for inviscid, hypersonic
flow past a slender body, using the equivalence princlple of Hayes (Reference
65) are developed in the following paragraphs. Using a regular perturbation
scheme, eguations are derived to describe the effects of small nonsymmetries.
These equatlione are solved and expllclt results are obtainad for infinite Mach
numbers and power law shock shapes. The section ends with a discussion of the
results and suggestions for future work,

a. Formulation of the Governing Equatlions

Conglder the steady, hypersonlic flow of an otherwise uniform stream past
a glender, nonsymmetric body with a blunted nose such as that shown in Figure
7%a. Later, the assumpt.nn shall be that the asymmetric cross-section deviates

'
8lightly from a circla, The z-axis of the ractangular coordinate, system in
Figqure 75a is aligned with tha fraestream veloclty vector. The ::Sgs-flow
plana ls then defined by a constant value of z., Hayes (Referance 65) has
shown that the steady, three~dimensional, hyperannlc flow past a mlender body

i3 equivalént*® to an unsteady, two-dimenslonal flow in the cross-flow plane

'towiLthin an arror of the order of the square of the slenderness ratlo.
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normal to the freestream velocity vector as shown in Figure 75b, The
equivalent two-dimengional, unsteady flow is thus in the x-y plane and can be
viewed as being due to a two-dimensinnal piston, whose shape at any time t is
that of the original slender body at the axial position z = Vgt, propagating
into an atmosphere at rest.

Now derive the integral form of the conservation equationg for an
arbitrary sector of the cros§-floﬁ plane defired 5} the anéle ¢6 as sﬁown in
Figure 76. Assume that the body and the resulting flowfield are symmetric
with regpect to the y-axis., The volume V, shown in Figure 76, is Adefined as
heing of unit depth in the z-direction and bounded by the body, a cylindrical
surface I lving ontside the shock wave and or which the veloci:y vanishes, and
the gector of extent $p.

When applied to the velume V, the equations expressing cnnservation of

mass, Newton's sacond law, and the first ilaw of thermodynamics hecome

-

-
a ljleav +!fpv:nds=n (492)
dt v Sp
> > ~ ~

a4 fipvaw + /' 5w nAds =~ [/ pnads (493)

it v S5 s

+ ~ » °
d I} ptervhyar - ! ple+ VAV ¢« ndS = - [[ pvun A5 (094)
v 2 Sa 2 s

Here the assumption is an invisciad, adiabatic flow without bcdy forces. The
closed surface S bounds thn Vnlume vV anpd has an cutward anit normal n, The

aper. surface Sy is a plane of uair depth at angle 4n and extends from the hody

{r = th(¢,t))ro the shosk wave (r = r_(4,t)),

Befcre proceeding further witn tie -development of these eguations, it is

~

useful to discuss the basic structure of the flowfield., Tn thig way, the

various anpqoximations +hat will be nade subseguentlv can be motivated,
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While the hypersonic flow past blunt-noscd lifting bodies will eventually be con-
sidered, it is instructive to first consider the axisymmetric case.
I1f, except for the region near the nose, the body is slender and the free-

stream Mach number is sufficiently large that M r, ' is of order unity or larger,

b
the shock layer between the body and bow shock wave is thin and consists of a
region of high density near the shock wave in which most of the shock layer mass
is c§ncentrated and a low density, high entropy region adjacent to the body.

This high entropy layer near the body arises from-the nose bl;ntnesé-since the
streamiines wetting the surface must pass thrcugh the normal or nearly normal
portions of the bow shock wave near the nose. Because the pressure does not

vary significantly outside the high density region near the bow shock wave, the
high entrophy near the body implies a relatively low density there. The pressure
variation across the shock layer occurs primarily in the high density region

near the shock wave. The pressure at the edge of the high density region is
approximately equal to the value given by the shock jump relations plus a cen-
tripetal correction, first described by Busemann (Reference €6). The radial velocity
varies smoothly and weakly from the given value at the body to that just down-
stream of the bow shock wave. Figure 77 shows, gualitatively, the variations

of the density 5, the pressure p, and the radial velocity u across the shock
layer for this axisymmetric case. Fiorino (rcfercnce 62) has obtained useful

ane . tical results for this problem with an inverse approach by assuming the

4 ‘nsity is negligibly small outside the high density layer near the shock.

With this approximation, the pressure is constant outside the high density
region. The results cbtained are quite like the results of modified Newtonian
theory except that the effects of nose bluntness are retained.

The chock layer structure for a slightly nonsymmetric body is expected to
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be quite similar except for the nonzero crosafiow velocity v in the
¢-direction. Of course, for a symmetric body, v is identically zero. The
shock wave associated with a nonsymmetric hody will also be nonsymmetric
although the degree of nonsymmetry is typically different from‘that of the
body. Consequently, thg crossflow velocity is expected to vary across the
shock layer. Pigure 78 illustrates the qualitative behavior of the radial
;héék iayer.profilés fo? thé nonsymmetfic éase.-h | o

Approximate forms of the integral conservation equaﬁlons fo; the case of a
nonsymmetric body are developed in the following paragraphs. For this case,
assumne that the shock layer is divided into a high density zone of thickness n
near the shock wave and a relatively low density region in the remaining part
of the shock layer between the high denaity zone and the body. Assume also
that the pressure does not vary radially nutside the high density zone and
ignore any radial variations of the radial velocity u. rinally, use a linear
variation across the shock layer for the azimuthal velocity v. These assumed
profiles are shown in Figure 79,

To proceed, first integrate the mass conservation equation, Equation

(492), with respect to time to obtain

-

»

J [ oV * 1 45 + pw Ve (495)

t
e av = - ) at
Vg 0

Her - pw 18 the freestream density and Ve is the volume of unit depth hounded
by the shock wave and the sector of extant ¢g,

o
Vo = | rg? a¢ (496)
C0

Alsn, V4 is the vnlume of unit Aepth bsunded by the shock wave, the body, and
the sector of extent ¢$y. The volume Vg is bounded by the surface Sg. Making
use of the assumed radial variation of the velocity v and density p, it is

posasihle to rewrite the mass conservation equation as
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0
7 {(pg=PpiN Tg + pp (rg2-112) = (pg~pp) N? - pm rg?) d¢  (497;
0 2 2 2
t .
= -] {(pg=Pp)VgN + Pp(rg=rp) (ve+vy) + (pg=pp) (vg=va)in2} dat
0 2 2(rg=ry)
¢=¢p

The subscript s refers to conditions j-:t downstream of the shock, b refers to

A —

_conditions on the body, and » refers to the freestream-conditions. If the bhow
shock wave is assumed to be sufficiently strong that ps/pw is large and n is

small compared to {rg-rp), it is possible to ignore teims of order n? and to -

————— e, —— i,

) obtain
i 00
] {(og=ppIn rg + oy (rg2-132) - oo rg?} a¢ (498)
0 2 2
t
a =] {(pg=pp) vg N + py (rg=rp) (vgtvp)l at
0 2 $=¢0

An even simpler result is obtained if p) compared to pg is ignored , where the

two are directly compared,

) t
| {03 N rg = Pw rg2) db = =) {py vg N + pplrg-ry) (vgrvi)} At (499)
0 2 0

2 2 $=¢g
Newton's gsecond law, Equation (493), contains an integral giving the net

pressure force acting on the surface §. Thig expression for the net pressure

force can be rewritten as

Y ¢0 FS rs A
- /] pn ds = =ps [ rg ng A4 = [ pn dr| (500)
S 0 rp $=0
rs a ¢n -
- [/ pn dr| + [ pp np ry, dé
Iy $=¢p 0

where here m, is the outward unit normal to the body. Also, use has bheen made
of the fact that the pressure p is equal to the constant freestream value pw

ahead of the shock wave., !'Ising Green's theorem in the plane, Equation (500)
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can be rawritten as

- -

én
- /] pnds =] (pho=pe)np
: ] 0
rs ~
-] (p=pp)n
3%

'rﬂ- ~
- | (pp=pw)n
v
where ppp i8 a reference value of the
more precisely later. Since (ppg-pPw)

used to obtain

én ~

Ty
| (Ppp=Pw)ny rp d¢ = - ] (Ppo=pe)r dr|

0 0
Tnus, the expression for the net press

a -~

bp
- /] pn as = | (py=Ppo) M
S 0

A

= (Ppo~Pw)n rgl

-

Tg
= | {p=pno)n
'y

":1ng the profiles shown in Figure 79,

A

¢o
ryp d¢ + | (Pp=Ppo)np rn dé
0 :

3V

rg )

ar| - | (p-pp)n ar] (so1)
¢=0 $=d¢

- . ts ~

dr| -~ ] (pp=pe)n dr|
¢=0 I'h ¢-¢0

surface pressure that will be specified

is a constant, Green's theorem can be

-~ -

h
- | (ppo=Pe)n dr| (502)
0

$=0 #=¢0

ure force hecomes

ry dé (503)

A

=(Pho~Pw) n 1yl
$=0 $=éo

rg -
ar| - | (p=ppo)n Aar|
$=0 $=45

the integrals on the left~hand side of

Eaquation (493) can he evaluated and thus produce the following form of

Newton's second law,

¢n »
4 | {valpp rg?=xp2 + (pg=pp)rg nl
de 0* 2 .

a A

+ eglvp=vg)pp (rg+2ry) (rg-ry,)} 4¢
6

vavn + Vh2]

+ {pplrg-rp) lep ug vatvy + eq vo2 +
2

.

1 AR e e Aaedbn £ Gt = e



. -
+ (pg=pp) [Vg (vgn + viy-vg gi) + ey (vn=vg N)(vgh + (vy=v, nz))]}¢ .
Y¥s~Th Fg~I'h =¢0

-

%0
= | (pp=pbo)npry 99 (504)
0

- {(ppp=pPe)rgn + (P~ppg)(rg=rpin}
¢=¢0

= {{ppg-pw)rgn + (p=ppg)(rg~rpin}
$=0

Here the terms of order n2 have been ignored when they are directly comparad
with terms of order n, Also, ; .represents the radially averaged value of the
pressure in the shock layer.

In order to elimjinate the internal enerqgy e as a variable, the following
discussion 18 restricted to calorically paerfect gases for which

pe = p (505)
oy

In this cage, the energy eauation , Fauation (494), can be rewritten
Y ~
a [/l (p *+10v3)yav + [[ (p +1pv2V , n d8
a v y-1 2 g Y-t 2
> ~
= - //pv+nas ($06)
5

+ *

Since V°'n vanishes on $ = 0, hecause nf symmetry there, as well as on [
-
because V vanishes on I, Equation (506) can he rewritten as

>
4 [l (p_+1evihav + [[ 1 ovZ ven a8

ac v y-1 2 8pg 2
@f) + A rg
= | pp Vp'ny A6 = [ _Y_pv Ir) (507)
0 - rp Y1 b=¢g

Since tha pressure p equals pe on [, then

/Il o4 =pu ||| ave+[]] p_ av (508)
v y-1 Y=1 v-v, Vg Y1
or
220
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90
I/ & =pg W Z ro? 48] (509)

1
v y-1 Y-1 2

%0
+ | pn rg®=ri? de + /] p=py av
0 y-1_ 2 Vg Y1

Making use of the profiles shown in Piqure 79, svaluate the integrals

“on the left-hand side of Equation (507) and thus obtain the following form of

the energy equation,

L
4 | { pn £g?-rp? + (pg=pp) (Y2 rg 0 = vglvn=vg) Tq n? + (wi=vg)2 1, n3)
aco y-1 2 2 2(Tg-Tp) 8(rg=tp)
* op(Vel £g2-1p? 4+ valvpeve) (2rptrg) (rg=rp) + (vp=va)2 (rg+3ry)(rgery)) }aé
2 2 6 24
+ {1 pp (ug? varvy + vedsvpveivip2vosvid)(rgmry)
2 2 4

"1 (pgepp) (Va2vgn + (¥p=vg 1) 1 (ua?43vg?) + (vp=vg MIZ vgn
2 Ll 3 2 rq= Ty

+ (yp=vg M3 M)

rg"Th 4 ¢=¢p
‘0 + on
*/ PnVp'np rr A6 + pe_ d [ 11,2 4 (310)
0 Yy~1 4t 0 2
= Y. (Ph VatVy (rg=ry) + (F-ph)v,ﬂ)
y-1 2 dmdy

-4 ]]] pepy av
at v, y=1

In additinn to matisfying rha snnsarvation equations, the flow quantities

must Alss satimfy the shock jump relations, ¥or a three-dimsnsional steady

flow, thesms jump relations are

a a

+ +

P Vm'ng = 05 Vaing = (511)

+ 4 » -
mMVe * Po Ny * m Vg + py Ny (512)
m (hy + Vg2) » mih, + Vg2) (513)

2 2
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Here h is the enthalpy per unit mass and ng {5 A unit vector normal to the

shock wave. For a calorically perfect gas,

h= 1 p (514)
=10

In this case, the shock jump relatinns can be manipulated to yield
Pg = __(y*1) M2 (515)
P (Y=1) Mu4 4+ 2

where M, is the normal component of the freestream Mach number,

>

Mp = Va'ng (516)
. T

»~ a
" My ez'ns

The sound speed a is related to the pressure and density by

a? = yp g (517)
p

Using Equation (515), it is possible to solve for the normal component of the

velocity downstream of the shock wave an

Ps "

Vo' = y=1 ¢+ 2 . (518)
* - Y+1 ~ A
Va'ng (Y+1)Ma?Z (ngea,)2

while Equation (512) can be used to show that the tangential component of

velocity is conserved across the ahock wave,

e - + .

Ve X Ng « Ve X 11y (819)

In the steady, three~dimensional flow, theé shuock wave is rnpreseanted by r =

rg(é,z). Here (r,¢,z) are orthqgonal cylindrical polar coordinates. The

+ -
velocity just downstream of the shock, Vg, is then expressed in thesa

cylindrical polar coordinates as

» - L3 ~

Vg ¥ Ug € + Vg ey + Wy @, (%20)

and the outward unit normal tn tha sghock wava {s given by

- - -

-

ey ~ 3 &4n rq ay = drg @,

ng ™ 3¢ dz (521)
5 2 1/2
[1 + (3_&n rg) + (3rg) )
3 Yz

222

————

b -



s e ——
— e,

BEquations (518) and {519) can then be used to determine the jump relations

for the three components of the velocity; the results are

2
1+ (3_&n rg). (3rg)

ug = 2 3rg (1 - 3 i 9z 1/ {1+ (3 &n r.)2+ (253)2] (522)
Vo Y1 3z 2 34 . 9z
Meo? (3rg) - ,
iz §
' 2 2
1+ (3 &n rg) (3ry) 2 2
Vgu =2 3rgdfncr, (1- 3¢ 3z )1 / (v + (2 &n xg) + (3rg) )
Voo Y"“ 9z 30 2 a¢ 3z
Mw? (Jxg)
3z
(523)
2
2 2 1+ (3 &n ry) (3ry)
wg = (1 + (3_4n r.) + (3ry) {y=t + 2 3¢ 3z__ 1
Vao 3¢ 3z Y+t v+ 2
 Ma? (3rg)
3z
2 2
+ {1+ (3 2n xrg) + (3xg) ) (524)
¢ dz -

Also, the density ratio can be expressed as '

Pa = (_(Y*1) Me2(3rg/32)2 1 / (_(y=1) Me2(3r /32z)2 + 2] (525)
bw T+ (A n rg02+(3rg)? T+ (3 in rg)i+larg)?
FY) dz 1) 3z

In the hypersonic small disturbance theory limit, corresponding to Me *+ « and

dr,/3z * 0 such that the product Mw 3rg/dz is finite, exists

g‘n_2_.£‘ (1 - 1 ] (526)
Vo  Y#1 3z (Moo 255)2

dz
Vg * =2 3rg 3 fnrxg (1 - 1 ] (527)
G: +1 3z 3¢ (Mw 21,)2

dz

g~ 1 (528)
Voo
Pa = _(Y*1) (Mo 3r./32)2 (529)

P (Y=1) (Mo 3rg/32)° + 2
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neglecting terms of order (3:;/32)2.

slightly nonsymmetric

also been neglected.

everywhere it appears

Recause flows past bodies which are only

are considered .iter, terms of order (3 2n rs/3¢)2 have

In the Hayes equivalence principle, one replaces z

b. The Axisymmetric Problem

in these shock relations with Vg,t.

It is ingtructive to see how the developed equations reducg to the

axisymmetric case congsidered earlier by Fiorino (Reference 62).

all scalar physical quantities are independent of ¢ and v vanishes

identically.

(pg=Pp)N rg + Py riz-rh2 =

4 lPa ug ry?)

de 2

d ipn rgz-rb2 + fm usz rgfi

at  v-1 >

0

o -

2

~ a

e, ‘e A$) =

2.

2 2

2

Poo tgz

~

~

~(pPp=pm)rglleg e)

Po_ &
y=1 4t

¢=

%o

Equations (491), (504), and (510) then reduce to

~ -

- (e¢‘e)

(zg2) + pp up Ty

2

where terms of relative order n "have been ignored as unimportant.

In this case,

the e-component of the momentum equation has been taken, where e is any

constant unit vector.

Equation (531) can

Proviﬁed the shock
pressure py,(t) can

Fi<rino (Reference

Since
60 PS a A ~
| erte d¢ = ey.e)
0 ¢

be rewritten

be calculated exactly and explicitly from these equations.

3

dt

n

A -~

- e¢.e)

(P ug 533) = (Pp~Pw) rgqg

2

$

o0

(530)
1 (531)
=0
(532)
Also,
(533)

trajectory rglt) is known, the body trajectory ry(t) and

f2) was the first to solve this inverse problem.

resulting solution is

Ph = Po + 1

]

21

(P ug rnz)
>
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-1/ t Y
m2=pp  {Ip+ [ pp (=1 d (o u’rg?) +d (rgd (peugrg?))lat}
0 2y de at 2y at ]
(535) 3
where 1
ug = _2_drg [1 - (aw/drg)?) (536) 3
Y+1 dt Aat ;
.The constant of integration I is determined by the initial conditions at t=0

and can be viewed as being due to the effects of nose hluntness. That 1is,

I

examination of Equation (535) for the case of a power law shock (e.g. rq -~ 2M)

PR e p——
[

shows that the inteogral term gives a result that is identical to that obtained

assuming a self-gimilar solutjon (e.g., ry - z™). The first term in Equation
(535) gives a contribution for power law shocks that grows like 2'/2Y, the
same result obtained by Yakura (Reference /6.) and Sychev (Reference 59) in
their studies of the effects of nose bluntness. This bluntness term can be v
interpreted as giving the differencs hetween the actual hody shape and the
body shape givnT by the self-gimjilar solution, for a given shock shape,
Recause the small-disturhance equations oversstimats the surface entropy and
thuas underestimate the surface density, the actual bhody radius is greater than
that given by the sel*-similar solution alone. In this sense, the bluntness
term i's determined as aivina a negative erntropy displacement effect, BRecause
o€ the use of the slender hody approximation and the equivalence principle,

‘ese results are not strictly valid in the nose region where Jrg/dt is of the
order of Vo or larger. Aas a conc=guence, the constant of integratiun Ig,
which determines the relative contribution of noge bluntness, must be

specifiel or determined from considerations that lie outside the prescnt

theory. Fiorino (Reference 62) obtained results that compared well witl. other
calculations by determining In from the condition that the shock radius rg and

hody radius ry are equal (to within the accuracy of the theory) when the shock
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drg/dt equals V,. This is equivalent to a "patching” procedure {not a
"matching” condition in the sense of the theory of matched asymptotlc
expansiong) in which the small disturbance solution valid downstream of the
nose ragion ia patched to a rather crude nose region gsolution at a point that
corresponds roughly to the boundary to the two reglons.

Note that Equationa (534) and (53%5) do not contain py Thus, these

4

results are valid for nonzero py., although terms of relative order n have been

sl

neglected. The density on the body, py, for a blunt-nosed body can be

——— v —

Ll Ll

astimated from the normal shock relations and the state equation. The entropy

on the body streamline follows from the normal shock relations,

Lok,

l 8h = 8o = 1 %n pgpn = 20 pgn

l Cp Y Pw Pw
‘ = 1 fn (2YMe2 = y+1] = 20 ((y+1) M2 )
Y Y+ (Y=-1)MgZ+2

The density on the body follows from the state equation as

/Y
Pn = (pPp! exp (- Sh=8w)
Poo Pw Cp

Substituting for the body pressure and entropy, gives

e mibme a4 ecnith mn fent anomtfn, o Maibed il G st o L s

-y

WY 2 2 -1/y
Pr= (1 +Y d (ug xg2)) (_(Y* 1)) Me€ ) (2YMo“=Y+1) i
Pw rg dt z aaE (Y=1)Meu+2